171 |
Desensitisation of the pituitary vasopressin receptor : development of a model system to assess involvement of G protein-coupled receptor kinase 5 : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry, University of Canterbury /Gatehouse, Michelle. January 2008 (has links)
Thesis (M. Sc.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references (p. 143-152). Also available via the World Wide Web.
|
172 |
Optimizing dose and mode of administration of luteinizing hormone releasing hormone analog for induced spawning of black sea bass, Centropristis striata /White, Allison E. January 2004 (has links)
Thesis (M.S.)--University of North Carolina at Wilmington, 2004. / Includes bibliographical references (leaves : [89]-95).
|
173 |
Investigating the mechanism of transcriptional regulation of the gonadotropin-releasing hormone receptor (GnRHR) gene by dexamethasone /Von Boetticher, S. January 2008 (has links)
Thesis (MSc)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
|
174 |
Male violence and stress in pregnancy : neuroendocrine parameters and length of gestation /Talley, Pamella Ruth. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 80-97).
|
175 |
On the therapeutic use of the hypothalamic gonadotrophin-releasing hormone in the humanSkarin, Göran. January 1983 (has links)
Thesis (doctoral)--Uppsala University, 1983. / Includes bibliographical references (p. 37-48).
|
176 |
Psychoneuroimmunology in terms of the two main stress axes sickness behaviour as trigger for the development of mental disorders /Viljoen, Margaretha. January 2003 (has links)
Thesis (Ph.D. (Psychiatry))--University of Pretoria, 2003. / Summary in English and Afrikaans. Includes bibliographical references.
|
177 |
Ο ρόλος της λεπτίνης και της CRH στην παιδική ιδιοπαθή θρομβοπενική πορφύρα / The role of leptin and CRH in childhood idiopathic thrombopenic purpuraΔημονίτσα, Αλεξάνδρα 07 October 2011 (has links)
H ιδιοπαθής θρομβοπενική πορφύρα είναι ένα αυτοάνοσο νόσημα που χαρακτηρίζεται από χαμηλό αριθμό αιμοπεταλίων και αιμορραγίες. Επιπλέον αυτή η ασθένεια κατηγοριοποιείται σε οξεία (όταν διαρκεί λιγότερο από έξι μήνες) και χρόνια μορφή.
Η λεπτίνη είναι μια ορμόνη/κυτταροκίνη που παράγεται από τα αδιποκύτταρα και ρυθμίζει την όρεξη και τον μεταβολισμό. Ως κυτταροκίνη η λεπτίνη προάγει την Th1 απόκριση και παίζει πολύ σημαντικό ρόλο στα αυτοάνοσα νοσήματα όπως έχει παρατηρηθεί σε πολλά μοντέλα ζώων. Στην εργασία αυτή μελετήσαμε τον ρόλο της λεπτίνης στην παιδική ιδιοπαθή θρομβοπενική πορφύρα (ΙΘΠ). Από τα πειράματά μας διαπιστώσαμε ότι τα επίπεδα της λεπτίνης συσχετίζονται αρνητικά με τον αριθμό των αιμοπεταλίων των ασθενών. Επιπλέον αποδείξαμε ότι στην ασθένεια που μελετήσαμε η λεπτίνη έχει αντί-φλεγμονώδη ρόλο αφού επάγει την έκφραση της IL-10 από το μονοκύτταρα
Το μόριο της εκλυτικής ορμόνης της κορτικοτροπίνης (CRH) εκφράζεται κυρίως στον υποθάλαμο και ενεργοποιεί μέσω του άξονα υποθάλαμος-υπόφυση-επινεφρίδια τα γλυκοκορτικοειδή τα οποία έχουν ανοσοκατασταλτική δράση. Η CRH που εντοπίζεται στην περιφέρεια έχει αντιθέτως προ-φλεγμονώδη δράση. Εμείς μετρήσαμε τα επίπεδα της CRH στο πλάσμα υγιώς και ασθενών δοτών και παρατηρήσαμε ότι στους υγιείς δότες η CRH έχει την ικανότητα να ρυθμίζει αρνητικά την έκφραση της λεπτίνης. Ο έλεγχος όμως αυτός χάνεται στους ασθενείς με αποτέλεσμα τα επίπεδα τα λεπτίνης αυξάνονται στον ορό τους / Ιdiopathic thrombocytopenic purpura is an autoimmune disease characterized by a low platelet count and bleeding. Moreover this disorder is classified as acute (of six month or less duration) or chronic.
Leptin is an adipocyte-derived hormone/cytokine that regulates food intake and basal metabolism. As a cytokine leptin promotes T helper 1 (TH1)-cell differentiation and can modulate the onset and progression of autoimmune responses in several animal models of disease. Here, we review the role of leptin in childhood idiopathic thrombopenic purpura (ITP). We found that leptin levels negatively correlated with platelet numbersand also that it plays an active anti-inflammatory role by promoting IL-10 secretion by monocytes.
Corticotropin-Releasing Hormone (CRH) CRH, the hypothalamic component of the hypothalamic-pituitary,adrenal axis, attenuates inflammation through stimulation of glucocorticoid release, whereas peripherally expressed CRH acts as a proinflammatory mediator. We measured CRH levels in the plasma of children suffering from ITP and in the plasma of the paediatric controls, and we found that in controls CRH down-regulates leptin’s expression but not in patients.
|
178 |
The importance of specific amino acid residues in transmembrane domains 3 and 5 of a corticotropin releasing-factor receptor for functional activity of a CRF-R1 selective small molecule antagonistGrigoriadis, Christopher Emil 22 January 2016 (has links)
INTRODUCTION: For many years, stress and anxiety disorders have taken a heavy toll on the American population. Affecting approximately 40 million individuals over the age of 18, the discovery of treatment options is very important. Ever since the 1950s, a wide variety of compounds have been discovered and proven to have antagonistic properties for such disorders. For the last three decades, however, researchers have focused on a specific peptide that was discovered in 1981 by Dr. Wylie Vale and his colleagues at the Salk Institute in San Diego, California, corticotropin releasing factor (CRF).
CRF is a 41 amino acid peptide that has been shown to play a very important role in an organism's endocrine response to stress through the activation of the hypothalamic–pituitary–adrenal (HPA) axis. Ever since its discovery, the identification and characterization of the CRF receptors and family members have allowed for the development of novel peptide and non–peptide antagonists. Unfortunately, these compounds have been unsuccessful in the progression to later stage clinical trials that could lead to promising therapeutics.
There are two receptor subtypes for this family of peptides known as CRFR1 and CRFR2. While there have been many compounds identified that can block CRFR1, currently, there are no known selective non–peptide antagonists for the CRFR2 subtype. As the two receptor subtypes share 70% sequence identity, close observation of the functional properties of antagonist ligands for CRFR1 may lead to the development of such ligands for CRFR2.
METHODS: In our current study, we focused on two residues in transmembrane domains (TMD) 3 (His199) and 5 (Met276) of CRFR1 that have proven to be important for the function of the highly selective small molecule antagonist antalarmin. In order to further prove the importance of these sites, we have mutated the two corresponding amino acids in CRFR2β to those of CRFR1: V215H in TMD 3 and V292M in TMD 5. In addition, we mutated a third amino acid residue, M293I, in order to avoid the positioning of two adjacent methionine amino acids. With this mutant construct, CRE–luciferase and cyclic AMP radioimmunoassay methodologies were used to observe the function of antalarmin on CRFR1, the mutant and wild type CRFR2β. The accumulation of cAMP was measured intracellularly following stimulation by the CRF receptor peptide agonists sauvagine, isolated from frog, and urocortin 1, isolated from rat.
RESULTS: For the initial CRE–luciferase functional assay, we used the CRF receptor agonist sauvagine on our mutant CRFR2β to indirectly measure the accumulation of intracellular cAMP through the enzyme luciferase. In the presence or absence of the antagonist antalarmin, there were no significant changes on the function of the mutant CRFR2β. On the other hand, when directly measuring the accumulation of intracellular cAMP via radioimmunoassay, antalarmin successfully showed a functional inhibitory effect on the mutant CRFR2β receptor. As expected, Ucn1 stimulation of CRFR1 in the presence of antalarmin indicated a decrease in the EC50 for the peptide agonist, and thus an inhibitory effect by antalarmin. Compared to CRFR1, we observed a similar effect for Ucn1 stimulation of the mutant CRFR2β receptor in the presence of antalarmin. While the presence or absence of antalarmin did not have a significant inhibitory effect on the wild type CRFR2β, it can be concluded that the mutant CRFR2β receptor possessed similar properties to the CRFR1 receptor with respect to antalarmin antagonist activity.
CONCLUSION: In our study, we were able to further support the importance of the two amino acid residues in TMD 3 and 5 of CRFR1 for the function of small molecule antagonists. In addition, we were able to show that antalarmin, a small molecule antagonist known to be highly selective for CRFR1, can have a functional inhibitory effect on the mutant CRFR2β. The progressive study of these discrete differences between the two CRF receptor subtypes may enable the discovery of novel selective non–peptide CRFR2β receptor antagonists.
|
179 |
GnRH/GnIH e seus receptores no sistema olfato-retinal de zebrafishCorchuelo Chavarro, Sheryll Yohana [UNESP] 29 May 2015 (has links) (PDF)
Made available in DSpace on 2016-02-05T18:29:24Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-05-29. Added 1 bitstream(s) on 2016-02-05T18:33:27Z : No. of bitstreams: 1
000854973_20161205.pdf: 410109 bytes, checksum: 5ceaa1852fc805e9d99744c37a96f7bb (MD5) Bitstreams deleted on 2016-12-06T15:11:22Z: 000854973_20161205.pdf,. Added 1 bitstream(s) on 2016-12-06T15:12:04Z : No. of bitstreams: 1
000854973.pdf: 2773395 bytes, checksum: daf1de70009034e8b87b75a4cc4b7610 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O hormônio liberador de gonadotropina (GnRH) é um dos fatores chaves na regulação neuroendócrina da reprodução dos vertebrados. Alguns peixes apresentam três variantes do GnRH: o GnRH1 envolvido na secreção de gonadotropinas, o GnRH2 que regula o comportamento alimentar e sexual e o GnRH3 expresso no bulbo olfatório e o nervo terminal cujas fibras nervosas inervam a retina e o epitélio olfatório. O zebrafish possui duas variantes do GnRH (GnRH2 e GnRH3), sendo o GnRH3 a variante hipofisiotrófica. Estudos mostram possível envolvimento do GnRH no sistema olfato-retinal. No sistema olfatório o GnRH regula a sensibilidade na detecção de alimento, o reconhecimento intra e interespecífico, entre outros. Na retina, o GnRH3 pode estar envolvido na acuidade visual e do processamento de informação da retina. Existem estudos que reportam a presença de receptores de GnRH em diferentes camadas da retina, no entanto ainda não é clara a presença de receptores no epitélio olfatório. Neste contexto, no presente estudo analisamos a localização do gnrh2, gnrh3 e seus receptores (gnrhr1,2,3 e 4) e do gnih (hormônio inibidor de gonadotropinas) no epitélio olfatório, a retina e o bulbo olfatório de machos e fêmeas adultos e comparamos a expressão destes genes em fêmeas em diferentes estágios de maturação gonadal. Para tanto, o RNA total do epitélio olfatório, retina, bulbo olfatório, cérebro e gônadas foi extraído. Com base na sequência dos genes gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3 e gnrhr4, primers forward e reverse foram desenhados para RT-PCR e qPCR. Sondas para a hibridização in situ também foram construídas para verificar os sítios de expressão destas moléculas no epitélio olfatório, retina e gônadas. Imunohistoquímica com os anticorpos anti-GnRH3 (BB8 e GF6) foram realizadas para localizar a proteína do GnRH3 nos tecidos analisados. O presente estudo apresenta um panorama da expressão do sistema... / The gonadotropin releasing hormone (GnRH) is one of the key factors involved in the neuroendocrine regulation of vertebrate reproduction. Some fish species have three GnRH variants: GnRH1 involved in gonadotropin secretion, GnRH2 regulating food and sexual behaviors and the GnRH3 which is expressed in the olfactory bulb and terminal nerve whose fibers innervate the retina and the olfactory epithelium. Two GnRH variants (GnRH2 and GnRH3) are present in the zebrafish, in which GnRH3 acts as the hypophisiotrophic variant. Recent studies have been showing the role of GnRH in the olfactory-retinal system. In the olfactory system, GnRH regulates food detection, and intra and interspecific recognition. In retina, GnRH3 may be involved in visual acuity modulation and retinal processing information. Moreover, studies have reported the presence of GnRH receptors in the retina, but not yet in the zebrafish olfactory epithelium. Therefore, the current study analyzed the presence of GnRH2, GnRH3 and its receptors (GnRH-R1,2,3 and 4) and GnIH (gonadotropin inhibitory hormone) in the olfactory epithelium, olfactory bulb, retina and in gonads of adult zebrafish. We also compared the expression of these genes during the different stages of ovarian maturation in zebrafish. For that, total RNA of the olfactory epithelium, olfactory bulb, retina and gonads was extracted with the PureLink® RNA Mini Kit(Ambion®). RT-PCR and qPCR analysis were performed using forward and reverse primers for gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3, gnrhr4 for . Probes for in situ hybridization were constructed to verify the expression sites of these molecules in the olfactory epithelium, retina, and gonads. Immunohistochemistry usinganti-GnRH3 antibodies (BB8 and GF6) were performed to identify the GnRH3 protein in these tissues. The current study presents a general expression view of GnRH/GnIH and their receptors in the olfactory epithelium-olfactory bulb-retinal axis during ... / FAPESP: 2014/02481-9
|
180 |
GnRH/GnIH e seus receptores no sistema olfato-retinal de zebrafish /Corchuelo Chavarro, Sheryll Yohana. January 2015 (has links)
Orientador: Laura Satiko Okada Nakaghi / Coorientador: Rafael Henrique Nóbrega / Banca: Elisabeth Criscuolo Urbinati / Banca: Matias Pandolfi / Resumo: O hormônio liberador de gonadotropina (GnRH) é um dos fatores chaves na regulação neuroendócrina da reprodução dos vertebrados. Alguns peixes apresentam três variantes do GnRH: o GnRH1 envolvido na secreção de gonadotropinas, o GnRH2 que regula o comportamento alimentar e sexual e o GnRH3 expresso no bulbo olfatório e o nervo terminal cujas fibras nervosas inervam a retina e o epitélio olfatório. O zebrafish possui duas variantes do GnRH (GnRH2 e GnRH3), sendo o GnRH3 a variante hipofisiotrófica. Estudos mostram possível envolvimento do GnRH no sistema olfato-retinal. No sistema olfatório o GnRH regula a sensibilidade na detecção de alimento, o reconhecimento intra e interespecífico, entre outros. Na retina, o GnRH3 pode estar envolvido na acuidade visual e do processamento de informação da retina. Existem estudos que reportam a presença de receptores de GnRH em diferentes camadas da retina, no entanto ainda não é clara a presença de receptores no epitélio olfatório. Neste contexto, no presente estudo analisamos a localização do gnrh2, gnrh3 e seus receptores (gnrhr1,2,3 e 4) e do gnih (hormônio inibidor de gonadotropinas) no epitélio olfatório, a retina e o bulbo olfatório de machos e fêmeas adultos e comparamos a expressão destes genes em fêmeas em diferentes estágios de maturação gonadal. Para tanto, o RNA total do epitélio olfatório, retina, bulbo olfatório, cérebro e gônadas foi extraído. Com base na sequência dos genes gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3 e gnrhr4, primers forward e reverse foram desenhados para RT-PCR e qPCR. Sondas para a hibridização in situ também foram construídas para verificar os sítios de expressão destas moléculas no epitélio olfatório, retina e gônadas. Imunohistoquímica com os anticorpos anti-GnRH3 (BB8 e GF6) foram realizadas para localizar a proteína do GnRH3 nos tecidos analisados. O presente estudo apresenta um panorama da expressão do sistema... / Abstract: The gonadotropin releasing hormone (GnRH) is one of the key factors involved in the neuroendocrine regulation of vertebrate reproduction. Some fish species have three GnRH variants: GnRH1 involved in gonadotropin secretion, GnRH2 regulating food and sexual behaviors and the GnRH3 which is expressed in the olfactory bulb and terminal nerve whose fibers innervate the retina and the olfactory epithelium. Two GnRH variants (GnRH2 and GnRH3) are present in the zebrafish, in which GnRH3 acts as the hypophisiotrophic variant. Recent studies have been showing the role of GnRH in the olfactory-retinal system. In the olfactory system, GnRH regulates food detection, and intra and interspecific recognition. In retina, GnRH3 may be involved in visual acuity modulation and retinal processing information. Moreover, studies have reported the presence of GnRH receptors in the retina, but not yet in the zebrafish olfactory epithelium. Therefore, the current study analyzed the presence of GnRH2, GnRH3 and its receptors (GnRH-R1,2,3 and 4) and GnIH (gonadotropin inhibitory hormone) in the olfactory epithelium, olfactory bulb, retina and in gonads of adult zebrafish. We also compared the expression of these genes during the different stages of ovarian maturation in zebrafish. For that, total RNA of the olfactory epithelium, olfactory bulb, retina and gonads was extracted with the PureLink® RNA Mini Kit(Ambion®). RT-PCR and qPCR analysis were performed using forward and reverse primers for gnrh2, gnrh3, gnrhr1, gnrhr2, gnrhr3, gnrhr4 for . Probes for in situ hybridization were constructed to verify the expression sites of these molecules in the olfactory epithelium, retina, and gonads. Immunohistochemistry usinganti-GnRH3 antibodies (BB8 and GF6) were performed to identify the GnRH3 protein in these tissues. The current study presents a general expression view of GnRH/GnIH and their receptors in the olfactory epithelium-olfactory bulb-retinal axis during ... / Mestre
|
Page generated in 0.0805 seconds