Spelling suggestions: "subject:"desnaturação"" "subject:"renaturation""
1 |
Renaturação em altas pressões hidrostáticas de proteínas recombinantes agregadas em corpos de inclusão produzidos em Escherichia coli / REFOLDING IN HIGH HIDROSTATIC PRESSURE OF RECOMBINANT PROTEINS FROM INCLUSION BODIES IN ESCHERICHIA ColiKeli Nunes Balduino 27 August 2009 (has links)
A expressão de proteínas na forma de corpos de inclusão em bactérias é uma alternativa muito interessante para obtenção de proteínas recombinantes. No entanto, a agregação é uma dificuldade frequentemente encontrada durante a renaturação dessas proteínas. Altas pressões hidrostáticas são capazes de solubilizar os corpos de inclusão na presença de baixas concentrações de reagentes desnaturantes, favorecendo a renaturação protéica com alto rendimento e redução de custos. O presente trabalho tem como objetivo a renaturação de proteínas recombinantes expressas em Escherichia coli sob a forma de corpos de inclusão usando altas pressões hidrostáticas. Três toxinas, todas apresentando cinco ou mais pontes dissulfídicas foram estudadas: NXH8, Naterina 2 e Bothropstoxina 1. Suspensões dos corpos de inclusão das três proteínas foram pressurizadas em 2000 bares de pressão durante 16 horas. Os tampões de renaturação foram otimizados para as três proteínas. O tampão utilizado no processo de renaturação da NXH8 foi Tris HCl 50 mM, pH 9,0 com proporção de 1GSH:4GSSG em concentração de 6 mM e 2 M GdnHCl. Foram utilizados corpos de inclusão em D.O.(A600nm) de 0,5. Após o processo de renaturação foi realizada diálise em pH 7,0. O rendimento final de recuperação de NXH8 solúvel foi de 40%, sendo obtidos 28,6 mg/L de meio de cultura. A renaturação de Bothropstoxina 1 foi obtida em tampão de renaturação Tris HCl 50 mM pH 7,5 na proporção de 2 GSH:3 GSSG em concentração de 3 mM e 1 M GdnHCl. Utilizamos uma suspensão com D.O.(A600nm) de 0,5. O rendimento final de recuperação de Bothropstoxina 1 renaturada foi de 32 %, obtendo-se 9,2 mg/L de meio de cultura. A renaturação de Naterina 2 foi obtida em tampão de renaturação com 20 mM de Tris HCl pH 9,0 na proporção de 2 GSH:3 GSSG e concentração de 10 mM e 1 M GdnHCl e corpos de inclusão na D.O. (A600nm) de 6,0. Foram obtidas 3,7 mg de Nateria 2 renaturada /L de meio de cultura (20% de recuperação a partir dos corpos de inclusão). O rendimento da Naterina 2 renaturada foi de 20 %. Para a análise e a comprovação da eficácia do processo de renaturação sob pressão foram utilizadas as técnicas de SDS-PAGE, western blot, microscopia eletrônica de varredura, ensaios biológicos in vivo e in vitro e estruturais. As análises físicoquímicas realizadas em NXH8 não mostraram nenhuma comprovação da sua renaturação. O ensaio in vivo realizado com a Naterina 2 mostrou uma leve atividade de contração de vênulas, indicando que ela esteja em sua conformação correta. Os ensaios in vitro com a Bothropstoxina 1 mostraram uma atividade citotóxica dose-dependente em células musculares. / The expression of proteins as inclusion bodies in bacteria is a widely used alternative for production of recombinante protein. However, the aggregation is a problem often encountered during refolding of these proteins. High hydrostatic pressure are able to solubilize the inclusion bodies in the presence of low concentrations of denaturant reagents, encouraging refolding protein with high efficiency and reduce costs. This work aims to refolding of recombinant proteins expressed in Escherichia coli from inclusion bodies using high hydrostatic pressure. Three toxins, all featuring five or more disulfide bonds were studied: NXH8, Natterin 2 and Bothropstoxin 1. Suspensions of inclusion bodies of the three proteins were pressurized to 2000 bars for 16 hours. The buffers were optimized for refolding of the three proteins. The buffer used in the refolding of NXH8 was 50 mM Tris HCl, pH 9.0 with proportion of 1GSH: 4GSSG at a concentration of 6 mM and 2 M GdnHCl. Inclusion bodies were used in O.D. (A600nm) of 0.5. After refolding process, dialysis was performed at pH 7.0. The final yield of obtaining soluble NXH8 was 40% (28,6 mg of soluble NXH8/L of culture medium). The refolding of Bothropstoxin 1 was obtained in refolding buffer of Tris HCl 50 mM, pH 7,5 with proportion of 2 GSH: GSSG 3 and concentration of 3 mM and 1 M GdnHCl. Use with a suspension of O.D. (A600nm) of 0.5. The final yield of recovery of Bothropstoxin 1 refolded was 32% (9,2 mg of refolded Bothropstoxin 1/L of culture medium). The refolding of Natterin 2 was performed in the refolding buffer: 20 mM Tris HCl pH 9.0 at a ratio of 2 GSH: 3GSSG and concentration of 10 mM and 1 M GdnHCl and inclusion bodies O.D. (A600nm) of 6.0. The yield of Natterin 2 refolded was 20% (3,7 mg/L of culture medium). Physico-chemical and biological analysis were performed by SDS-PAGE, western blot, scanning electron microscopy, biological tests in vivo and in vitro and structural. The analysis conducted in NXH8 did not show any evidence of refolding. An activity of contraction of venules was show by the in vivo test indicating a correct conformation of Natterin 2. Tests in vitro with Bothropstoxin 1 showed a dosedependent cytotoxic activity in muscle cells.
|
2 |
Renaturação em altas pressões hidrostáticas de proteínas recombinantes agregadas em corpos de inclusão produzidos em Escherichia coli / REFOLDING IN HIGH HIDROSTATIC PRESSURE OF RECOMBINANT PROTEINS FROM INCLUSION BODIES IN ESCHERICHIA ColiBalduino, Keli Nunes 27 August 2009 (has links)
A expressão de proteínas na forma de corpos de inclusão em bactérias é uma alternativa muito interessante para obtenção de proteínas recombinantes. No entanto, a agregação é uma dificuldade frequentemente encontrada durante a renaturação dessas proteínas. Altas pressões hidrostáticas são capazes de solubilizar os corpos de inclusão na presença de baixas concentrações de reagentes desnaturantes, favorecendo a renaturação protéica com alto rendimento e redução de custos. O presente trabalho tem como objetivo a renaturação de proteínas recombinantes expressas em Escherichia coli sob a forma de corpos de inclusão usando altas pressões hidrostáticas. Três toxinas, todas apresentando cinco ou mais pontes dissulfídicas foram estudadas: NXH8, Naterina 2 e Bothropstoxina 1. Suspensões dos corpos de inclusão das três proteínas foram pressurizadas em 2000 bares de pressão durante 16 horas. Os tampões de renaturação foram otimizados para as três proteínas. O tampão utilizado no processo de renaturação da NXH8 foi Tris HCl 50 mM, pH 9,0 com proporção de 1GSH:4GSSG em concentração de 6 mM e 2 M GdnHCl. Foram utilizados corpos de inclusão em D.O.(A600nm) de 0,5. Após o processo de renaturação foi realizada diálise em pH 7,0. O rendimento final de recuperação de NXH8 solúvel foi de 40%, sendo obtidos 28,6 mg/L de meio de cultura. A renaturação de Bothropstoxina 1 foi obtida em tampão de renaturação Tris HCl 50 mM pH 7,5 na proporção de 2 GSH:3 GSSG em concentração de 3 mM e 1 M GdnHCl. Utilizamos uma suspensão com D.O.(A600nm) de 0,5. O rendimento final de recuperação de Bothropstoxina 1 renaturada foi de 32 %, obtendo-se 9,2 mg/L de meio de cultura. A renaturação de Naterina 2 foi obtida em tampão de renaturação com 20 mM de Tris HCl pH 9,0 na proporção de 2 GSH:3 GSSG e concentração de 10 mM e 1 M GdnHCl e corpos de inclusão na D.O. (A600nm) de 6,0. Foram obtidas 3,7 mg de Nateria 2 renaturada /L de meio de cultura (20% de recuperação a partir dos corpos de inclusão). O rendimento da Naterina 2 renaturada foi de 20 %. Para a análise e a comprovação da eficácia do processo de renaturação sob pressão foram utilizadas as técnicas de SDS-PAGE, western blot, microscopia eletrônica de varredura, ensaios biológicos in vivo e in vitro e estruturais. As análises físicoquímicas realizadas em NXH8 não mostraram nenhuma comprovação da sua renaturação. O ensaio in vivo realizado com a Naterina 2 mostrou uma leve atividade de contração de vênulas, indicando que ela esteja em sua conformação correta. Os ensaios in vitro com a Bothropstoxina 1 mostraram uma atividade citotóxica dose-dependente em células musculares. / The expression of proteins as inclusion bodies in bacteria is a widely used alternative for production of recombinante protein. However, the aggregation is a problem often encountered during refolding of these proteins. High hydrostatic pressure are able to solubilize the inclusion bodies in the presence of low concentrations of denaturant reagents, encouraging refolding protein with high efficiency and reduce costs. This work aims to refolding of recombinant proteins expressed in Escherichia coli from inclusion bodies using high hydrostatic pressure. Three toxins, all featuring five or more disulfide bonds were studied: NXH8, Natterin 2 and Bothropstoxin 1. Suspensions of inclusion bodies of the three proteins were pressurized to 2000 bars for 16 hours. The buffers were optimized for refolding of the three proteins. The buffer used in the refolding of NXH8 was 50 mM Tris HCl, pH 9.0 with proportion of 1GSH: 4GSSG at a concentration of 6 mM and 2 M GdnHCl. Inclusion bodies were used in O.D. (A600nm) of 0.5. After refolding process, dialysis was performed at pH 7.0. The final yield of obtaining soluble NXH8 was 40% (28,6 mg of soluble NXH8/L of culture medium). The refolding of Bothropstoxin 1 was obtained in refolding buffer of Tris HCl 50 mM, pH 7,5 with proportion of 2 GSH: GSSG 3 and concentration of 3 mM and 1 M GdnHCl. Use with a suspension of O.D. (A600nm) of 0.5. The final yield of recovery of Bothropstoxin 1 refolded was 32% (9,2 mg of refolded Bothropstoxin 1/L of culture medium). The refolding of Natterin 2 was performed in the refolding buffer: 20 mM Tris HCl pH 9.0 at a ratio of 2 GSH: 3GSSG and concentration of 10 mM and 1 M GdnHCl and inclusion bodies O.D. (A600nm) of 6.0. The yield of Natterin 2 refolded was 20% (3,7 mg/L of culture medium). Physico-chemical and biological analysis were performed by SDS-PAGE, western blot, scanning electron microscopy, biological tests in vivo and in vitro and structural. The analysis conducted in NXH8 did not show any evidence of refolding. An activity of contraction of venules was show by the in vivo test indicating a correct conformation of Natterin 2. Tests in vitro with Bothropstoxin 1 showed a dosedependent cytotoxic activity in muscle cells.
|
3 |
Estudos de renaturação de proteínas agregadas utilizando altas pressões hidrostáticas / Renaturation studies of aggregate proteins using high hydrostatic pressureNatália Malavasi Vallejo 05 March 2013 (has links)
No presente trabalho estudamos a renaturação sob alta pressão hidrostática de uma forma mutante da proteína verde fluorescente (enhanced GFP, eGFP), a qual somente emite fluorescência característica quando enovelada na sua forma nativa. A abordagem do presente estudo foi focada no controle da bioatividade da proteína recombinante, a fluorescência, como alternativa à determinação de solubilidade da proteína, fator que não é um indicador ideal de enovelamento proteico adequado. A ação da alta pressão na solubilização dos corpos de inclusão (CI) de eGFP produzidos em bactérias E. coli recombinantes e no enovelamento da proteína foi estudada. A compressão dos CI de eGFP em 2,4 kbar durante 30 minutos promoveu a dissociação dos agregados. No entanto, a incubação nesta condição não favoreceu o enovelamento da eGFP. O processo de renaturação foi avaliado em diversas condições de descompressão após a dissociação em 2,4 kbar. Durante a descompressão gradual, o aumento da fluorescência foi obtido em pressões que variaram entre a pressão atmosférica e 1,38kbar. Os níveis mais elevados de fluorescência de eGFP foram obtidos por incubação durante várias horas a níveis de pressão entre 0,35 e 0,69 kbar. Esta condição de pressão se mostrou favorável à renaturação de eGFP e é possível que também possa ser utilizada para favorecer o enovelamento de outras proteínas monoméricas. Ainda utilizando a eGFP como modelo, verificamos que os CI desta proteína produzidos por bactérias cultivadas em menor temperatura (37ºC) possuem maior quantidade de proteína recombinante apresentando a fluorescência característica em 509 nm, ou seja, na sua forma nativa, do que os CI expressos em temperaturas mais elevadas (42ºC e 47ºC). A análise realizada por espectroscopia de infravermelho (FT-IR) também demonstrou que os CI produzidos em temperaturas mais brandas possuem maior grau de estruturas secundárias semelhantes às da proteína na sua forma nativa. Além disso, os CI produzidos a 37ºC também são mais facilmente solubilizados pela ação da alta pressão do que aqueles produzidos em maior temperatura. Conforme esperado, a renaturação da eGFP a partir de CI produzidos a 37ºC foi 25 vezes mais eficiente do que a obtida utilizando CI produzidos a 47ºC. No presente estudo demonstramos também que a dissociação dos agregados exercida pela ação da alta pressão (2,4 kbar) pode ser amplificada quando em associação com a incubação em baixa temperatura (-9ºC) e que a combinação destas duas propriedades físicas eleva a solubilização dos agregados em CI, com a consequente elevação dos rendimentos de renaturação de eGFP. Mostramos ainda no presente estudo que a cinética de renaturação de eGFP em 0,69 kbar é proporcional à temperatura de incubação (entre 10ºC e 50ºC). O nível mais elevado de fluorescência foi obtido quando a renaturação de eEGP foi realizada a 20ºC. A taxa de maturação do cromóforo da eGFP é mais fortemente afetada pela temperatura do que a taxa de enovelamento da proteína. Em conclusão, a temperatura de produção dos CI, a temperatura de dissociação dos agregados e a temperatura de enovelamento podem afetar muito o rendimento e a cinética da renaturação de eGFP em alta pressão. Os resultados do presente estudo podem abrir novas perspectivas para melhorias no processo de enovelamento de proteínas a partir de CI utilizando alta pressão. Também neste trabalho descrevemos a renaturação das proteínas de Xac, PilB e os produtos dos genes XAC2810 e XAC3272 nunca antes obtidas na forma solúvel. Os rendimentos de solubilização destas três proteínas foram muito altos, entre 75% e 89%. A proteína PilB renaturada em alta pressão apresentou atividade ATPasica elevada, o que nunca antes foi demonstrado para a PilB de Xac. / In the present work we studied the refolding under high hydrostatic pressure of a mutant form of the green fluorescent protein (eGFP), which only emits the green characteristic fluorescence when in the native folded state. The approach of the present study was focused on controlling the bioactivity of the recombinant protein, the fluorescence, as an alternative for the determination of protein solubility, which is not an ideal indicator of proper protein folding. We studied the action of high pressure in the solubilization of the inclusion bodies (IB) of eGFP produced in bacteria E. coli and in the folding of this protein. The compression of a suspension of eGFP IB at 2.4 kbar for 30 minutes promoted dissociation of aggregates. However, the eGFP folding, monitored by the fluorescence at 509 nm, does not occur in this pressure level. The process of eGFP refolding was evaluated under various decompression conditions after dissociation of the IB at 2.4 kbar. During the gradual decompression, the increase in fluorescence was achieved at pressures ranging between atmospheric pressure and 1.38 kbar. The higher levels of eGFP fluorescence were obtained by incubation for several hours at pressure levels between 0.35 and 0.69 kbar. It is possible that the pressure condition that proved favorable for refolding of eGFP can also be used to favor the folding of other monomeric proteins. Using eGFP as a model, we also found that the IB produced by bacteria grown in a relatively low temperature (37ºC) is more fluorescent, presenting a higher amount of recombinant protein with the characteristic fluorescence at 509 nm, i.e., in its native form, than the IB expressed at higher temperatures (42ºC and 47ºC). The analysis by infrared spectroscopy (FT-IR) also demonstrated that the IB produced at milder temperatures have a higher degree of secondary structure similar to the protein in its native form. Furthermore, the IB produced at 37ºC are also more readily solubilized by the action of high pressure than those produced at the higher temperatures. As expected, the folding of eGFP from IB produced at 37ºC was 25 times more efficient than that obtained using IB produced at 47ºC. In this study we demonstrated that the dissociation of aggregates exerted by the action of high pressure (2.4 kbar) can be amplified by combination with incubation at low temperature (-9ºC) and the association of these two physical properties can be used to increase the solubilization of the aggregates in IB, with a consequent increase in the yield of eGFP refolding. In the present study we also showed that the kinetics of refolding of eGFP is proportional to temperature (10ºC 50ºC). The higher level of fluorescence was obtained when the refolding of eGFP was performed at 20°C. The rate of maturation of the eGFP chromophore is more strongly affected by temperature than the rate of folding of the protein. In conclusion, the temperature of production of IB, the temperature of dissociation of aggregates and the folding temperature can greatly affect the yield and kinetics of refolding of eGFP at high pressure. The results of this study may open new perspectives for improvements in the process of protein folding from IB using high pressure. In this paper we also describe the refolding of the proteins of Xac, PilB and the gene products XAC2810 and XAC3272, which have never before been achieved in soluble form. The yields of solubilization/refolding of these three proteins were very high, between 75% and 89%. The protein PilB refolded at high pressure presented high ATPase activity, which has never been shown for the PilB of Xac.
|
4 |
Utilização de altas pressões hidrostáticas para o estudo e renaturação de proteínas com estrutura quaternária / Utilization of high hydrostatic pressure for the study and refolding of proteins with quaternary structureRodrigues, Daniella 24 September 2012 (has links)
A produção de proteínas recombinantes é uma ferramenta essencial para a indústria biotecnológica e suporta a expansão da pesquisa biológica moderna. Uma variedade de hospedeiros pode ser utilizada para produzir estas proteínas e dentre eles, as bactérias E. coli são as hospedeiras mais utilizadas. No entanto, a expressão heteróloga de genes em E. coli frequentemente resulta em um processo de enovelamento incompleto que leva ao acúmulo de agregados insolúveis, conhecidos como corpos de inclusão (CI). Altas pressões hidrostáticas são capazes de desfavorecer interações intermoleculares hidrofóbicas e eletrostáticas, levando à dissociação dos agregados e por isso são úteis para solubilizar e renaturar proteínas agregadas em CI. O presente trabalho teve como objetivo o estudo do processo de desagregação dos CI e de renaturação das proteínas oligoméricas subunidade B da toxina colérica (CTB) e região globular da fibra adenoviral (RGFA) utilizando altas pressões hidrostáticas. A toxina colérica (CT) é composta por uma subunidade A e cinco subunidades B combinadas em uma holotoxina AB5. A CTB é a porção pentamérica não tóxica da CT, responsável pela ligação da holotoxina ao receptor gangliosídeo GM1. A fibra do adenovírus é uma proteína homotrimérica que forma parte do capsídeo viral, organizada em três regiões: a cauda N-terminal, a haste central e a região C-terminal (região globular). A RGFA se liga à proteína de membrana CAR nas células hospedeiras e promove a internalização do vírus. Os estudos apresentados neste trabalho demonstraram que a alta pressão hidrostática foi eficaz na desagregação dos CI da CTB e da RGFA. As condições de renaturação foram otimizadas utilizando-se diferentes proporções do par redox glutationa oxidada e reduzida, concentrações de agentes caotrópicos, presença de aditivos e esquemas diferenciados de compressão/descompressão daqueles previamente descritos na literatura. CTB solúvel e pentamérica foi obtida pela compressão da suspensão de CI a 2,4 kbar por 16 horas em tampão TrisHCl 50 mM pH 8,5, 1 mM de tween 20 e descompressão direta seguida de incubação em pressão atmosférica. O rendimento de renaturação da CTB solúvel e pentamérica foi de até 45 % e 288 mg de CTB/litro de cultura bacteriana. Esta proteína apresentou estrutura regular e atividade biológica. RGFA trimérica foi obtida pela compressão da suspensão de CI em tampão TrisHCl 50 mM pH 8,0 e 0,5 M de L-arginina a 2,4 kbar por 1,5 horas e 0,4 kbar por 16 horas antes da completa descompressão. O rendimento de proteína solúvel trimérica da RGFA foi de 4 %, porém não foi possível obter a atividade biológica desta proteína. / The production of recombinant proteins is an essential tool for the biotechnology industry and supports the expansion of modern biological research. Recombinant proteins can be produced by a variety of hosts and among them the bacteria E. coli is the most commonly used. However, the expression of heterologous genes in E. coli often results in an incomplete folding process that leads to the accumulation of insoluble aggregates known as inclusion bodies (IB). The application of high hydrostatic pressure impairs intermolecular hydrophobic and electrostatic interactions of proteins in solution, leading to dissociation of aggregates and is therefore useful tool to solubilize and refold aggregated proteins in IB. This work aimed to study the process of disaggregation of IB and refolding of oligomeric proteins the B subunit of cholera toxin (CTB) and the globular region of the adenoviral fiber (RGFA) using high hydrostatic pressure. The cholera toxin (CT) comprises one A subunit and five B subunits, combined in the AB5 holotoxin. The pentameric CTB is non-toxic moiety of CT which is responsible for binding to the receptor ganglioside GM1 holotoxin. The adenovirus fiber is a homotrimeric protein wich forms part of the viral capsid and it is organized into three regions: the N-terminal tail, the central rod and the C-terminal region (globular region). The RGFA binds to membrane protein CAR in host cells and promotes the internalization of virus. The studies presented here demonstrate that high hydrostatic pressure was effective in the disaggregation of the CTB and RGFA IB. The refolding conditions were optimized using different proportions of the redox couple oxidated and reduced glutathione, concentrations of chaotropic agents, presence of additives and pressure/decompression schemes distinguished from the previously described in the literature. Soluble pentameric CTB was obtained when the suspension of IB were compressed at 2.4 kbar for 16 hours in 50 mM of Tris-HCl buffer pH 8.5, 1 mM of tween 20, followed by direct decompression and incubation at atmospheric pressure. The yield of refolded soluble pentameric CTB was up to 45 % and 288 mg of CTB/ liter of bacterial culture. This protein was shown to presented regular structure and biological activity. Trimeric RGFA was obtained by compression of the suspension of IB in 50 mM of Tris-HCl buffer pH 8.0, 0.5M L-arginine at 2.4 kbar for 1.5 hours and at 0.4 kbar for 16 hours prior to the complete decompression. The yield of soluble trimeric RGFA was 4 %, however this protein did not present biological activity.
|
5 |
Utilização de altas pressões hidrostáticas para o estudo e renaturação de proteínas com estrutura quaternária / Utilization of high hydrostatic pressure for the study and refolding of proteins with quaternary structureDaniella Rodrigues 24 September 2012 (has links)
A produção de proteínas recombinantes é uma ferramenta essencial para a indústria biotecnológica e suporta a expansão da pesquisa biológica moderna. Uma variedade de hospedeiros pode ser utilizada para produzir estas proteínas e dentre eles, as bactérias E. coli são as hospedeiras mais utilizadas. No entanto, a expressão heteróloga de genes em E. coli frequentemente resulta em um processo de enovelamento incompleto que leva ao acúmulo de agregados insolúveis, conhecidos como corpos de inclusão (CI). Altas pressões hidrostáticas são capazes de desfavorecer interações intermoleculares hidrofóbicas e eletrostáticas, levando à dissociação dos agregados e por isso são úteis para solubilizar e renaturar proteínas agregadas em CI. O presente trabalho teve como objetivo o estudo do processo de desagregação dos CI e de renaturação das proteínas oligoméricas subunidade B da toxina colérica (CTB) e região globular da fibra adenoviral (RGFA) utilizando altas pressões hidrostáticas. A toxina colérica (CT) é composta por uma subunidade A e cinco subunidades B combinadas em uma holotoxina AB5. A CTB é a porção pentamérica não tóxica da CT, responsável pela ligação da holotoxina ao receptor gangliosídeo GM1. A fibra do adenovírus é uma proteína homotrimérica que forma parte do capsídeo viral, organizada em três regiões: a cauda N-terminal, a haste central e a região C-terminal (região globular). A RGFA se liga à proteína de membrana CAR nas células hospedeiras e promove a internalização do vírus. Os estudos apresentados neste trabalho demonstraram que a alta pressão hidrostática foi eficaz na desagregação dos CI da CTB e da RGFA. As condições de renaturação foram otimizadas utilizando-se diferentes proporções do par redox glutationa oxidada e reduzida, concentrações de agentes caotrópicos, presença de aditivos e esquemas diferenciados de compressão/descompressão daqueles previamente descritos na literatura. CTB solúvel e pentamérica foi obtida pela compressão da suspensão de CI a 2,4 kbar por 16 horas em tampão TrisHCl 50 mM pH 8,5, 1 mM de tween 20 e descompressão direta seguida de incubação em pressão atmosférica. O rendimento de renaturação da CTB solúvel e pentamérica foi de até 45 % e 288 mg de CTB/litro de cultura bacteriana. Esta proteína apresentou estrutura regular e atividade biológica. RGFA trimérica foi obtida pela compressão da suspensão de CI em tampão TrisHCl 50 mM pH 8,0 e 0,5 M de L-arginina a 2,4 kbar por 1,5 horas e 0,4 kbar por 16 horas antes da completa descompressão. O rendimento de proteína solúvel trimérica da RGFA foi de 4 %, porém não foi possível obter a atividade biológica desta proteína. / The production of recombinant proteins is an essential tool for the biotechnology industry and supports the expansion of modern biological research. Recombinant proteins can be produced by a variety of hosts and among them the bacteria E. coli is the most commonly used. However, the expression of heterologous genes in E. coli often results in an incomplete folding process that leads to the accumulation of insoluble aggregates known as inclusion bodies (IB). The application of high hydrostatic pressure impairs intermolecular hydrophobic and electrostatic interactions of proteins in solution, leading to dissociation of aggregates and is therefore useful tool to solubilize and refold aggregated proteins in IB. This work aimed to study the process of disaggregation of IB and refolding of oligomeric proteins the B subunit of cholera toxin (CTB) and the globular region of the adenoviral fiber (RGFA) using high hydrostatic pressure. The cholera toxin (CT) comprises one A subunit and five B subunits, combined in the AB5 holotoxin. The pentameric CTB is non-toxic moiety of CT which is responsible for binding to the receptor ganglioside GM1 holotoxin. The adenovirus fiber is a homotrimeric protein wich forms part of the viral capsid and it is organized into three regions: the N-terminal tail, the central rod and the C-terminal region (globular region). The RGFA binds to membrane protein CAR in host cells and promotes the internalization of virus. The studies presented here demonstrate that high hydrostatic pressure was effective in the disaggregation of the CTB and RGFA IB. The refolding conditions were optimized using different proportions of the redox couple oxidated and reduced glutathione, concentrations of chaotropic agents, presence of additives and pressure/decompression schemes distinguished from the previously described in the literature. Soluble pentameric CTB was obtained when the suspension of IB were compressed at 2.4 kbar for 16 hours in 50 mM of Tris-HCl buffer pH 8.5, 1 mM of tween 20, followed by direct decompression and incubation at atmospheric pressure. The yield of refolded soluble pentameric CTB was up to 45 % and 288 mg of CTB/ liter of bacterial culture. This protein was shown to presented regular structure and biological activity. Trimeric RGFA was obtained by compression of the suspension of IB in 50 mM of Tris-HCl buffer pH 8.0, 0.5M L-arginine at 2.4 kbar for 1.5 hours and at 0.4 kbar for 16 hours prior to the complete decompression. The yield of soluble trimeric RGFA was 4 %, however this protein did not present biological activity.
|
6 |
Estudos de renaturação de proteínas agregadas utilizando altas pressões hidrostáticas / Renaturation studies of aggregate proteins using high hydrostatic pressureVallejo, Natália Malavasi 05 March 2013 (has links)
No presente trabalho estudamos a renaturação sob alta pressão hidrostática de uma forma mutante da proteína verde fluorescente (enhanced GFP, eGFP), a qual somente emite fluorescência característica quando enovelada na sua forma nativa. A abordagem do presente estudo foi focada no controle da bioatividade da proteína recombinante, a fluorescência, como alternativa à determinação de solubilidade da proteína, fator que não é um indicador ideal de enovelamento proteico adequado. A ação da alta pressão na solubilização dos corpos de inclusão (CI) de eGFP produzidos em bactérias E. coli recombinantes e no enovelamento da proteína foi estudada. A compressão dos CI de eGFP em 2,4 kbar durante 30 minutos promoveu a dissociação dos agregados. No entanto, a incubação nesta condição não favoreceu o enovelamento da eGFP. O processo de renaturação foi avaliado em diversas condições de descompressão após a dissociação em 2,4 kbar. Durante a descompressão gradual, o aumento da fluorescência foi obtido em pressões que variaram entre a pressão atmosférica e 1,38kbar. Os níveis mais elevados de fluorescência de eGFP foram obtidos por incubação durante várias horas a níveis de pressão entre 0,35 e 0,69 kbar. Esta condição de pressão se mostrou favorável à renaturação de eGFP e é possível que também possa ser utilizada para favorecer o enovelamento de outras proteínas monoméricas. Ainda utilizando a eGFP como modelo, verificamos que os CI desta proteína produzidos por bactérias cultivadas em menor temperatura (37ºC) possuem maior quantidade de proteína recombinante apresentando a fluorescência característica em 509 nm, ou seja, na sua forma nativa, do que os CI expressos em temperaturas mais elevadas (42ºC e 47ºC). A análise realizada por espectroscopia de infravermelho (FT-IR) também demonstrou que os CI produzidos em temperaturas mais brandas possuem maior grau de estruturas secundárias semelhantes às da proteína na sua forma nativa. Além disso, os CI produzidos a 37ºC também são mais facilmente solubilizados pela ação da alta pressão do que aqueles produzidos em maior temperatura. Conforme esperado, a renaturação da eGFP a partir de CI produzidos a 37ºC foi 25 vezes mais eficiente do que a obtida utilizando CI produzidos a 47ºC. No presente estudo demonstramos também que a dissociação dos agregados exercida pela ação da alta pressão (2,4 kbar) pode ser amplificada quando em associação com a incubação em baixa temperatura (-9ºC) e que a combinação destas duas propriedades físicas eleva a solubilização dos agregados em CI, com a consequente elevação dos rendimentos de renaturação de eGFP. Mostramos ainda no presente estudo que a cinética de renaturação de eGFP em 0,69 kbar é proporcional à temperatura de incubação (entre 10ºC e 50ºC). O nível mais elevado de fluorescência foi obtido quando a renaturação de eEGP foi realizada a 20ºC. A taxa de maturação do cromóforo da eGFP é mais fortemente afetada pela temperatura do que a taxa de enovelamento da proteína. Em conclusão, a temperatura de produção dos CI, a temperatura de dissociação dos agregados e a temperatura de enovelamento podem afetar muito o rendimento e a cinética da renaturação de eGFP em alta pressão. Os resultados do presente estudo podem abrir novas perspectivas para melhorias no processo de enovelamento de proteínas a partir de CI utilizando alta pressão. Também neste trabalho descrevemos a renaturação das proteínas de Xac, PilB e os produtos dos genes XAC2810 e XAC3272 nunca antes obtidas na forma solúvel. Os rendimentos de solubilização destas três proteínas foram muito altos, entre 75% e 89%. A proteína PilB renaturada em alta pressão apresentou atividade ATPasica elevada, o que nunca antes foi demonstrado para a PilB de Xac. / In the present work we studied the refolding under high hydrostatic pressure of a mutant form of the green fluorescent protein (eGFP), which only emits the green characteristic fluorescence when in the native folded state. The approach of the present study was focused on controlling the bioactivity of the recombinant protein, the fluorescence, as an alternative for the determination of protein solubility, which is not an ideal indicator of proper protein folding. We studied the action of high pressure in the solubilization of the inclusion bodies (IB) of eGFP produced in bacteria E. coli and in the folding of this protein. The compression of a suspension of eGFP IB at 2.4 kbar for 30 minutes promoted dissociation of aggregates. However, the eGFP folding, monitored by the fluorescence at 509 nm, does not occur in this pressure level. The process of eGFP refolding was evaluated under various decompression conditions after dissociation of the IB at 2.4 kbar. During the gradual decompression, the increase in fluorescence was achieved at pressures ranging between atmospheric pressure and 1.38 kbar. The higher levels of eGFP fluorescence were obtained by incubation for several hours at pressure levels between 0.35 and 0.69 kbar. It is possible that the pressure condition that proved favorable for refolding of eGFP can also be used to favor the folding of other monomeric proteins. Using eGFP as a model, we also found that the IB produced by bacteria grown in a relatively low temperature (37ºC) is more fluorescent, presenting a higher amount of recombinant protein with the characteristic fluorescence at 509 nm, i.e., in its native form, than the IB expressed at higher temperatures (42ºC and 47ºC). The analysis by infrared spectroscopy (FT-IR) also demonstrated that the IB produced at milder temperatures have a higher degree of secondary structure similar to the protein in its native form. Furthermore, the IB produced at 37ºC are also more readily solubilized by the action of high pressure than those produced at the higher temperatures. As expected, the folding of eGFP from IB produced at 37ºC was 25 times more efficient than that obtained using IB produced at 47ºC. In this study we demonstrated that the dissociation of aggregates exerted by the action of high pressure (2.4 kbar) can be amplified by combination with incubation at low temperature (-9ºC) and the association of these two physical properties can be used to increase the solubilization of the aggregates in IB, with a consequent increase in the yield of eGFP refolding. In the present study we also showed that the kinetics of refolding of eGFP is proportional to temperature (10ºC 50ºC). The higher level of fluorescence was obtained when the refolding of eGFP was performed at 20°C. The rate of maturation of the eGFP chromophore is more strongly affected by temperature than the rate of folding of the protein. In conclusion, the temperature of production of IB, the temperature of dissociation of aggregates and the folding temperature can greatly affect the yield and kinetics of refolding of eGFP at high pressure. The results of this study may open new perspectives for improvements in the process of protein folding from IB using high pressure. In this paper we also describe the refolding of the proteins of Xac, PilB and the gene products XAC2810 and XAC3272, which have never before been achieved in soluble form. The yields of solubilization/refolding of these three proteins were very high, between 75% and 89%. The protein PilB refolded at high pressure presented high ATPase activity, which has never been shown for the PilB of Xac.
|
7 |
Renaturação sob alta pressão hidrostática de tiorredoxinas de Xylella fastidiosa / Renaturation under high hidrostatic pressure of thioredoxins of Xylella fastidiosaLemke, Laura Simoni 07 August 2012 (has links)
Muitas das proteínas de valor biomédico relevante são encontradas em baixas concentrações em suas fontes nativas. O alto nível de expressão de proteínas recombinantes em E. coli, muitas vezes gera o acúmulo de proteínas como agregados insolúveis no citoplasma e/ou periplasma da bactéria, denominados de corpos de inclusão (CI). A alta pressão tem sido amplamente utilizada no estudo da conformação das proteínas,ela modula as interações proteína-proteína e proteína-solvente através de mudanças no volume das mesmas, promovendo a entrada de água nas cavidades não expostas da molécula e promovendo hidratação e solubilização dos agregados. O presente trabalho teve como objetivo a renaturação de proteínas recombinantes expressas como CI em Escherichia coli usando alta pressão hidrostática como condição branda de dissociação dos agregados. As tiorredoxinas TsnC e TrxA, a proteína YbbN e a proteína comigratória com bacterioferritina (Bcp), todas de Xylella fastidiosa, foram estudadas neste trabalho. As condições de renaturação foram otimizadas, utilizando-se diferentes proporções do par redox, concentrações de GdnHCl, presença de aditivos e esquemas de descompressão. Para a quantificação e análise da eficácia do processo de renaturação das proteínas sob pressão foram utilizadas as técnicas de microscopia eletrônica de varredura dos CI e de SDS-PAGE, e ensaios de atividade enzimática das proteínas. A TsnC foi renaturada em Tris HCl 50 mM com proporção de 10GSH:1GSSG em concentração final de 10 mM, 0,75 M GdnHCl, na presença de 0,5 M de Triton-X e a pressão utilizada foi de 2,4 kbar por 1 hora e 30 minutos seguida de descompressão direta e incubação por 16 horas em pressão atmosférica. O rendimento final de obtenção de TsnC solúvel foi altíssimo, de até 89,9%. A renaturação de proteína YbbN, nunca antes descrita, foi obtida em tampão de renaturação Tris HCl 50 mM, na presença de 0,5 M de L-Arginina e a pressão utilizada foi de 2,4 kbar por 1 hora e 30 minutos seguida de descompressão direta e incubação por 16 horas em pressão atmosférica. A proteína YbbN, que apresentou atividade de tioredoxina, foi renaturada com rendimento de até 98% a partir da proteína insolúvel nos CI. Foi possível a solubilização da tiorredoxina TrxA e Bcp sob alta pressão hidrostática em tampão de renaturação Tris HCl 50 mM, utilizando diferentes proporções do par redox na concentração final de 10 mM e 1,5 M de GdnHCl, porém não foi possível obter a atividade biológicas destas proteínas. Mostramos também que a L-Arginina apresenta efeito auxiliar na solubilização dos CI induzida pela alta pressão, e ao mesmo tempo se mostrou altamente protetora contra a inativação da atividade da YbbN promovida pela incubação em altas temperaturas, o que sugere que a presença deste aminoácido pode ter alta aplicabilidade juntamente com a aplicação de altas pressões para elevar os rendimentos de renaturação de proteínas recombinantes a partir de CI. / Many of the relevant proteins are found in low concentrations in their native sources. The high level expression of recombinant heterologous proteins in Escherichia coli often causes their accumulation as insoluble aggregates in the cytoplasm or periplasm of bacteria in a mainly inactive form, known as inclusion bodies (IB). The high pressure has been widely used to study the conformational states of proteins. It modulates the protein-protein and protein-solvent interactions by changing the volume of the system, promoting the entrance of water into the cavities unexposed to water, exposing hydrophobic regions and promoting solubilization of the aggregates. The present study aimed to refold recombinant proteins expressed in E. coli as IB using high hydrostatic pressure as a mild condition for IB dissociation. The thioredoxins TsnC, TrxA and Ybbn and the protein comigratory with bacterioferritin (Bcp) of Xylella fastidiosa were studied in this work. The conditions for refolding were optimized for proportions of the redox pair, GdnHCl concentration, presence of additives and schemes for decompression. To analyze the effectiveness of the process of refolding under pressure we have used, scanning electron microscopy of the IB and SDS-PAGE and enzymatic activity assays for quantification and analysis of the solubilized proteins. The TsnC was renatured in 50 mM TrisHCl at a ratio of 10GSH: 1GSSG in 10 mM final concentration, 0.75 M GdnHCl in the presence of 0.5M Trito X-100 and application of 2.4 kbar for 1.5 hours, followed by direct decompression and incubation for 16 h at atmospheric pressure. The final yield of soluble and biological active TsnC was very high, up to 89,9%. The refolding of protein YbbN was obtained by application of 2.4 kbar for 1.5 h to an IB suspension in buffer 50 mM Tris HCl, in the presence of 0.5 M L-arginine, followed by direct decompression and incubation for 16 h at atmospheric pressure. We also show that L-arginine had a highly protective effect on the inactivation of biological activity of YbbN promoted by incubation at high temperatures.The final yield of refolded YbbN, that present thioredoxin activity, was also very high: 98%. TrxA and Bcp thioredoxins were solubilized at 2.4 kbar and step decompression. However, these proteins did not present biological activity. We also show that L-arginine has an auxiliary effect on the solubilization of IB induced by high pressure, while its presence proved highly protective against inactivation of the enzymatic activity promoted by incubation at high temperatures. These results suggest that the presence of this amino acid can have high applicability to increase the yield of refolding of recombinant proteins from the IC at high pressure.
|
8 |
Renaturação sob alta pressão hidrostática de tiorredoxinas de Xylella fastidiosa / Renaturation under high hidrostatic pressure of thioredoxins of Xylella fastidiosaLaura Simoni Lemke 07 August 2012 (has links)
Muitas das proteínas de valor biomédico relevante são encontradas em baixas concentrações em suas fontes nativas. O alto nível de expressão de proteínas recombinantes em E. coli, muitas vezes gera o acúmulo de proteínas como agregados insolúveis no citoplasma e/ou periplasma da bactéria, denominados de corpos de inclusão (CI). A alta pressão tem sido amplamente utilizada no estudo da conformação das proteínas,ela modula as interações proteína-proteína e proteína-solvente através de mudanças no volume das mesmas, promovendo a entrada de água nas cavidades não expostas da molécula e promovendo hidratação e solubilização dos agregados. O presente trabalho teve como objetivo a renaturação de proteínas recombinantes expressas como CI em Escherichia coli usando alta pressão hidrostática como condição branda de dissociação dos agregados. As tiorredoxinas TsnC e TrxA, a proteína YbbN e a proteína comigratória com bacterioferritina (Bcp), todas de Xylella fastidiosa, foram estudadas neste trabalho. As condições de renaturação foram otimizadas, utilizando-se diferentes proporções do par redox, concentrações de GdnHCl, presença de aditivos e esquemas de descompressão. Para a quantificação e análise da eficácia do processo de renaturação das proteínas sob pressão foram utilizadas as técnicas de microscopia eletrônica de varredura dos CI e de SDS-PAGE, e ensaios de atividade enzimática das proteínas. A TsnC foi renaturada em Tris HCl 50 mM com proporção de 10GSH:1GSSG em concentração final de 10 mM, 0,75 M GdnHCl, na presença de 0,5 M de Triton-X e a pressão utilizada foi de 2,4 kbar por 1 hora e 30 minutos seguida de descompressão direta e incubação por 16 horas em pressão atmosférica. O rendimento final de obtenção de TsnC solúvel foi altíssimo, de até 89,9%. A renaturação de proteína YbbN, nunca antes descrita, foi obtida em tampão de renaturação Tris HCl 50 mM, na presença de 0,5 M de L-Arginina e a pressão utilizada foi de 2,4 kbar por 1 hora e 30 minutos seguida de descompressão direta e incubação por 16 horas em pressão atmosférica. A proteína YbbN, que apresentou atividade de tioredoxina, foi renaturada com rendimento de até 98% a partir da proteína insolúvel nos CI. Foi possível a solubilização da tiorredoxina TrxA e Bcp sob alta pressão hidrostática em tampão de renaturação Tris HCl 50 mM, utilizando diferentes proporções do par redox na concentração final de 10 mM e 1,5 M de GdnHCl, porém não foi possível obter a atividade biológicas destas proteínas. Mostramos também que a L-Arginina apresenta efeito auxiliar na solubilização dos CI induzida pela alta pressão, e ao mesmo tempo se mostrou altamente protetora contra a inativação da atividade da YbbN promovida pela incubação em altas temperaturas, o que sugere que a presença deste aminoácido pode ter alta aplicabilidade juntamente com a aplicação de altas pressões para elevar os rendimentos de renaturação de proteínas recombinantes a partir de CI. / Many of the relevant proteins are found in low concentrations in their native sources. The high level expression of recombinant heterologous proteins in Escherichia coli often causes their accumulation as insoluble aggregates in the cytoplasm or periplasm of bacteria in a mainly inactive form, known as inclusion bodies (IB). The high pressure has been widely used to study the conformational states of proteins. It modulates the protein-protein and protein-solvent interactions by changing the volume of the system, promoting the entrance of water into the cavities unexposed to water, exposing hydrophobic regions and promoting solubilization of the aggregates. The present study aimed to refold recombinant proteins expressed in E. coli as IB using high hydrostatic pressure as a mild condition for IB dissociation. The thioredoxins TsnC, TrxA and Ybbn and the protein comigratory with bacterioferritin (Bcp) of Xylella fastidiosa were studied in this work. The conditions for refolding were optimized for proportions of the redox pair, GdnHCl concentration, presence of additives and schemes for decompression. To analyze the effectiveness of the process of refolding under pressure we have used, scanning electron microscopy of the IB and SDS-PAGE and enzymatic activity assays for quantification and analysis of the solubilized proteins. The TsnC was renatured in 50 mM TrisHCl at a ratio of 10GSH: 1GSSG in 10 mM final concentration, 0.75 M GdnHCl in the presence of 0.5M Trito X-100 and application of 2.4 kbar for 1.5 hours, followed by direct decompression and incubation for 16 h at atmospheric pressure. The final yield of soluble and biological active TsnC was very high, up to 89,9%. The refolding of protein YbbN was obtained by application of 2.4 kbar for 1.5 h to an IB suspension in buffer 50 mM Tris HCl, in the presence of 0.5 M L-arginine, followed by direct decompression and incubation for 16 h at atmospheric pressure. We also show that L-arginine had a highly protective effect on the inactivation of biological activity of YbbN promoted by incubation at high temperatures.The final yield of refolded YbbN, that present thioredoxin activity, was also very high: 98%. TrxA and Bcp thioredoxins were solubilized at 2.4 kbar and step decompression. However, these proteins did not present biological activity. We also show that L-arginine has an auxiliary effect on the solubilization of IB induced by high pressure, while its presence proved highly protective against inactivation of the enzymatic activity promoted by incubation at high temperatures. These results suggest that the presence of this amino acid can have high applicability to increase the yield of refolding of recombinant proteins from the IC at high pressure.
|
9 |
Desenvolvimento de uma tecnologia para produção e purificação do Fator Estimulador de Colônia de Granulócito humano recombinante produzido em Escherichia coli / Desenvolvimento de uma tecnologia para produção e purificação do Fator Estimulador de Colônia de Granulócito humano recombinante Escherichia coliEguia, Fara Amelia Primelles 28 May 2018 (has links)
Os neutrófilos são glóbulos brancos do sangue e primeira linha de defesa contra as bactérias. A proliferação destas células é principalmente controlada pelo Fator Estimulador de Colônia de Granulócito (G-CSF). O G-CSF humano recombinante (rhG-CSF) é um medicamento amplamente utilizado para tratar a neutropenia, condição caracterizada pela contagem de neutrófilos abaixo de 1.500/mm3. O rhG-CSF já foi obtido no Centro de Biotecnologia do Instituto Butantan em E. coli como corpos de inclusão (CI), reportando-se instabilidade do plasmídeo e baixo rendimento. Neste trabalho, o plasmídeo pARKAN-I foi avaliado para produzir rhG-CSF em E. coli e viabilizar sua obtenção em biorreator. Esse vetor carrega a sequência pAR, inserida para aumentar sua estabilidade. E. coli BL21 (DE3) Star pLysS transformada com pARKAN-I/rhG-CSF foi cultivada em frascos agitados para avaliação da estabilidade do plasmídeo em meios complexos (2YT e de autoindução) e quimicamente definido (HDF). Avaliou-se a influência de indutores (IPTG e lactose), glicose e antibióticos sobre a estabilidade plasmidial. A fim de se obter material para purificação, foram realizados cultivos em biorreator com meio de autoindução sem antibióticos em modo batelada e HDF com antibióticos em modo batelada alimentada, a 30ºC, 30% de oxigênio e pH 6,8. As etapas de purificação incluíram: lise em homogeneizador contínuo de alta pressão, lavagens, solubilização e renaturação dos CI, e cromatografia de troca catiônica em SP-Sepharose. Avaliaram-se três métodos de renaturação: diafiltração, diálise e diluição. A estabilidade do plasmídeo foi avaliada pela percentagem de colônias obtidas em placas de LB-ágar com antibiótico em relação às colônias que cresceram nas placas de LB-ágar sem antibiótico. A identidade proteica foi determinada por SDS-PAGE e Western Blotting. A pureza relativa e a produção específica do rhG-CSF foram determinadas por densitometria das bandas da eletroforese. A quantificação proteica foi feita pelo método do ácido bicinconínico. Nos cultivos em frascos com meio 2YT sem glicose, o crescimento foi mais lento, porém a fase exponencial mais prolongada, alcançando concentração celular (Cx) mais elevada (2,56 g/L) do que as culturas com glicose (Cx1,35 g/L), que cresceram mais rápido e chegaram primeiro à fase estacionária. O cultivo com meio de autoindução proporcionou crescimento similar ao do meio 2YT sem glicose. Em meio HDF, os cultivos tiveram o crescimento mais lento e menor Cx (0,94 g/L). Os meios 2YT e de autoindução mostraram 100% de colônias resistentes à canamicina antes e após indução, exceto o 2YT sem antibiótico e sem glicose, com 97,5% e 94,1% após 6 e 8 h de indução, respectivamente, coincidindo com a maior produção de rhG-CSF. Em frascos, o meio HDF com antibiótico teve 93% de colônias resistentes antes da indução dos cultivos em frascos, diminuindo até 85% após 4 h de indução, com baixa produção do rhG-CSF, verificada apenas por Western Blotting. Os cultivos em biorreator mostraram baixa velocidade específica de crescimento (0,30 h-1), porém elevada Cx e produção de rhG-CSF, sendo superior no meio de autoindução, que também resultou mais barato do que o HDF. O método de diluição em tampão tris 20 mM pH 8,0 com EDTA 2 mM, Triton X-100 0,1% e glicerol 10% apresentou maior percentagem de renaturação. Foi estabelecido um processo de purificação que permitiu obter rhG-CSF com 87% de pureza, integridade estrutural e atividade biológica. O plasmídeo pARKAN-I, vetor sem restrições de propriedade intelectual e proteção de patente, mostrou alta estabilidade nos meios complexos avaliados, tanto em frasco como em biorreator, permitindo produzir rhG-CSF em larga escala sem adição de antibióticos ao meio de cultura, o que reduziu o custo do processo de obtenção. / Neutrophils are white blood cells and part of the first line of defense against bacteria. The proliferation of these cells is mainly controlled by the Granulocyte Colony Stimulating Factor (GCSF). Recombinant human G-CSF (rhG-CSF) is widely used to treat neutropenia, condition characterized by a neutrophil count below 1,500/ mm3. The rhG-CSF was already obtained at the Biotechnology Center of the Butantan Institute in E. coli as inclusion bodies (IB), but plasmid instability and low yield were reported. In this work, the plasmid pARKAN-I was evaluated to produce rhG-CSF in E. coli and enable the bioreactor production. This vector carries a Par sequence, inserted to increase its stability. E. coli BL21 (DE3) Star pLysS transformed with pARKAN-I / rhG-CSF was grown in shaken flasks to evaluate the plasmid stability in complex (2YT and autoinduction) and chemically defined (HDF) media. Also, the influence of inducers (IPTG and lactose), the addition of glucose and the presence of antibiotics on the plasmid stability were evaluated. In order to obtain material for rhG-CSF purification, a batch culture with autoinduction medium without antibiotic and fed-batch culture HDF medium with antibiotic were performance in bioreactor at 30º C, 30% oxygen and pH 6.8. The purification steps included: lysis in high pressure continuous homogenizer, wash, solubiliztion and refolding of IB and cation exchange chromatography in SP-Sepharose. Three refolding methods were evaluated: diafiltration, dialysis and dilution. Plasmid stability was evaluated by the percentage of colonies on LB-agar plates with antibiotic in relation to the colonies that grew on LB-agar plates without antibiotics. Protein identity was determined by SDS-PAGE and Western Blotting. Relative purity and specific production of rhG-CSF were determined by densitometry of SDS-PAGE bands. Protein quantification was performed by the bicinchoninic acid method. In shaken flask cultures with 2YT medium without glucose, the growth was slower, but the exponential phase was longer, reaching higher cell concentration (Cx=2.56 g/L) than the cultures in 2YT medium with glucose (Cx≈1.35 g/L), which grew faster and reached the stationary phase earlier. Cultures with autoinduction medium provided similar growth to the 2YT medium without glucose. Cultures with HDF medium displayed slower growth and lower Cx (0.94 g/L). Shaken flask cultures with 2YT and autoinduction media showed 100% of kanamycin resistant colonies before and after induction, except for 2YT without antibiotic and without glucose, which presented 97.5% and 94.1% of kanamycin resistant colonies after 6 and 8 h of induction, respectively, despite being the medium with higher production of rhG-CSF. In flasks, HDF medium with antibiotic presented 93% of kanamycin resistant colonies before induction, decreasing to 85% after 4 h of induction, the rhGCSF production was very low, and could be verified only by Western Blotting. Bioreactor cultivations showed low specific growth rate (0.30 h-1), but high cell density and recombinant protein production. The rhG-CSF production was higher in autoinduction medium, which was cheaper than HDF. The dilution method using 20 mM tris buffer pH 8.0, 2 mM EDTA, 0.1% Triton X-100 and 10% glycerol showed the highest percentage of refolding. A purification process was established and allowed to obtain rhG-CSF with 87% purity, structural integrity and biological activity. The expression vector pARKAN-I, which is free of intellectual property and patent protection, showed high plasmid stability in the complex media evaluated in flask and bioreactor and allowed to produce rhG-CSF in large scale without addition of antibiotics to the culture medium, reducing the cost of the production process.
|
10 |
Renaturação das proteínas não estruturais 1(NS1) dos vírus da zika e da dengue utilizando altas pressões / Refolding of non-structural proteins 1 (NS1) of zika and dengue viruses using highSilva, Cleide Mara Rosa da 11 August 2017 (has links)
As principais matérias primas necessárias para a preparação de testes diagnósticos são as proteínas dos patógenos que necessariamente apresentem as estruturas nativas. O objetivo do presente estudo foi a obtenção das proteínas não estruturais 1 (NS1) dos vírus da dengue (DENV) e da zika (ZIKV) a partir dos corpúsculos de inclusão (CI) produzidos em bactérias Escherichia coli. Mostramos que a combinação de alta pressão hidrostática (APH) e pH alcalino é eficiente para a solubilização de NS1-CI. A incubação em 2,4 kbar das suspensões de NS1-CI em pH alcalino mostrou-se eficiente para a solubilização da NS1. A presença de Arg promove a dissociação de oligômeros. A aplicação de 2,4 kbar às suspensões de NS1-CI em pH de 10,5 (DENV) e de 11,5 (ZIKV) na presença de Arg e um par redox, seguida de diálise em tampão em pH 8,5, foram as condições escolhidas para o reenovelamento de NS1. Obtivemos ambas NS1 com rendimentos entre 75% e 90% em relação às quantidades totais das proteínas presente nos correspondentes CI de NS1. As NS1 reenoveladas apresentaram reatividade comparável às proteínas obtidas utilizando um protocolo convencional estabelecido, com rendimentos mais de 25 vezes superiores. Foi obtido um processo altamente eficiente para o reenovelamento de NS1 apresentando características biológicas preservadas em relação a reatividade com anticorpos específicos de antígeno, incluindo soro de paciente infectado com zikv e que, portanto, podem ser usados como antígeno para o desenvolvimento de vacinas ou testes de diagnóstico. Além disso, este estudo descreve a criação de um processo inovador, que é a utilização concomitante de APH e pH alcalino, para solubilização e posterior reenovelamento de NS1-CI que podem ser utilizados para outras proteínas relevantes. / The main products for the preparation of diagnostic tests are as proteins of the pathogens that necessarily present as the native structures. The objective of the present study was to obtain non-structural proteins 1 (NS1) from dengue virus (DENV) and zika virus (ZIKV) from the inclusion bodies (IBs) produced in Escherichia coli bacteria. We show that it is a combination of high hydrostatic pressure (HHP) and alkaline pH is efficient for a solubilization of NS1-IB. A 2.4 kbar incubation of NS1-IB suspensions at alkaline pH proved to be efficient for NS1 solubilization. The presence of Arg promotes the dissociation of oligomers. The application of 2.4 kbar to the suspensions of NS1-IB at pH 10.5 (DENV) and 11.5 (ZIKV) in the presence of Arg and a redox pair, dialysis in pH 8.5 buffer were as conditions chosen for the refolding of NS1. We obtained both NS1 at yields between 75% and 90% relative to the total amounts of the proteins present in the corresponding NS1 IB. Refolded NS1 showed similar to proteins obtained using an established standard protocol, with yields more than 25 times higher. A highly efficient process for the refolding of NS1 was obtained with preserved biological features regarding reactivity with antigen-specific antibodies, including sera of zikv-infected patients and that can be used as antigen for the development of vaccines or diagnostic tests. In addition, this study describes the creation of an innovative process, which is a concomitant use of HHP and alkaline pH, for solubilization and subsequent refolding of NS1-IB that can be used for other relevant proteins.
|
Page generated in 0.0686 seconds