31 |
Vyhodnocení efektivity zateplení bytového domu / Evaluation of the Effectiveness of Thermal Insulation of Residential BuildingStehnová, Miroslava January 2012 (has links)
The thesis is focused on the evaluation of the effectiveness of a residential building. For processing was used itemized budget insulated apartment building created in the program Kros and critique energy performance of buildings. The work evaluates the effectiveness of insulation and return on investment costs.
|
32 |
Polyfunkční bytový dům / Polyfunctional residential buildingSmetanová, Lenka January 2013 (has links)
The subject of the master´s thesis is a design of polyfunctional residential building. The residential building is partly basament and has four floors and ten flats. Two flats are maisonettes. On the first floor are a cosmetics salon and a massages salon. The thesis contains a dispositional and building construction design and elaboration of the given part of implementary project documentation.
|
33 |
Analýza vlivu zateplení na cenu bytových jednotek v netypovém domě v Brně / Analysis of the effect of insulation on the housing unit price in a non-standard house in BrnoHájek, Petr January 2015 (has links)
Assessing the impact of insulation on the price of immovable assets and return on such an investment. The work is based price of the thermal insulation on the specific model of the object and the subsequent conversion of prices on selected housing unit. Housing unit is also measured using current valuation rules, as well as by market valuation. Create Database insulated and non-insulated housing units and the difference between their prices is determined by the value of work compared with the cost model chosen insulation unit. Subsequently, the price is compared to the insulation housing units with insulation effect on the market price of the apartment. The paper assessed the state of energy consumption before and after the insulation work. The work is conceived as a breakdown of theoretical information, which are then practically applied to the object model. Calculations are therefore linked with the text part of the thesis.
|
34 |
Návratnost investic spojených s výstavbou bytového domu v Olomouci. / The return on investment associated with construction of a residential building in Olomouc.Kochaňová, Renata January 2015 (has links)
This diploma thesis the return on investment associated with construction of a residential building in Olomouc. First we will award the construction according to the decree. Then, we find out the level of investments in the construction of the house. The next step will be to determine the amount of rent for individual apartments and garages. We see the return of discounted net rent. Then we find the usual price of apartments and garages. As the last step we see the usual price of the entire apartment building. We will compare, whether of profits is more profitable to rent apartments and a garage in the house, sell for apartments or sell the entire apartment building.
|
35 |
Stanovení ekonomické efektivnosti zateplení bytového domu / Determining the economic efficiency of insulation of an apartment buildingJanovská, Radka January 2016 (has links)
The aim of this thesis is the evaluation of the effectiveness of a residential building. Theoretical part describes the creating price of construction work, in practical part we focus on design of insulation, creating a budget and evaluating the effectiveness of insulation and return on investment.
|
36 |
Inverkan av värmesystem på termisk komfort i ett flerbostadshus med hänsyn till energianvändning / Impact of heating systems on thermal comfort in a residential building with regard to energy useLarek, Adrian, Tran, Jimmy January 2015 (has links)
Inomhusklimatet har en avgörande roll för människans hälsa och välmående då människor befinner sig inomhus i nästan halva sitt liv. Det finns flera aspekter till hur det ska erhållas ett bra inomhusklimat men de mer betydelsefulla aspekterna är både god luftkvalitet och termisk komfort. Samtidigt som innebörden av reducering av energianvändning har en viktig roll i dagens utveckling. Då det ständigt arbetas med att försöka reducera energianvändningen i syfte till att underlätta för miljö- belastningen, väcker det frågor om hur den termiska komforten påverkas av detta. Rapportens syfte kommer därmed ligga i identifikation av uppvärmningssystem för ett givet flerbostadshus i Stockholmsområdet med fokus på termisk komfort och energianvändning. Utvärderingen baseras på olika typer av inverkan från diverse system som har utförts med beräkningssprogrammet IDA ICE. Ett referensfall för ett flerbostadshus användes som underlag och modellerades enligt A- och K-ritningar samt indata enligt Sveby. Det kommer även att inkludera de miljöcertifieringar som används i störst utsträckning här i Sverige och både ange deras krav gällande den termiska komforten samt respektive fokusområde då olika miljöcertifieringar har olika bedömningskriterier. Under denna studie visade det sig att det sällan tas hänsyn till den termiska komforten på motsvarande sätt som energianvändningen. Det har även visat sig att i de fall där krav gällande den termiska komforten finns, är den otillräckligt definierad för att ge en god uppfattning av komforten. Kraven tar, med andra ord, inte hänsyn till hur bra ett hus presterar under ett helt år utan fokuserar på ett momentant värde. Till simuleringen gjordes en känslighetsanalys som påvisade vikten och behovet av en tydlig standard för odefinierade variabler för att uttrycka människors bedömning av termisk komfort. Efter samtliga simuleringarna, granskades energiberäkningar efter erhållen granskningsmall från WSP Systems i syfte att utföra en egenkontroll samt ge ett underlag för rimlighetsbedömning. Från de erhållna resultaten visade det sig att golvvärme och ökad börvärde till 22 °C gav en ökad termisk komfort men samtidigt en ökning i energianvändningen medan FTX-systemet med radiatorer gav upphov till reducerad energianvändning med cirka en tredjedel samt en liten ökning av den termiska komforten. Det visade sig även vara att vid val av FTX-systemet gav högst årlig energibesparing men att det även bör tas hänsyn till installationskostnaderna för FTX-system och golvvärmesystemet till skillnad från om börvärdet ökas till 22 °C. Det blir då en kostnadsfråga och en avgörande parameter för val bland dessa tre systemen. / The indoor climate plays a crucial role in human health and well-being when people are indoors for nearly half their life. There are several aspects to how one should achieve good indoor climate, but the more significant aspects are both good air quality and thermal comfort. Simultaneously one must regard that the reduction of energy has an important role in today’s development. While trying to reduce energy consumption in order to facilitate the environmental load, it raises the questions whether the thermal comfort is affected by this. The purpose of the report will lie in the identification of a heating system for a given apartment building in the Stockholm area, with a focus on thermal comfort and energy use. The evaluation is based on various types of impacts from various systems that have been computed in IDA ICE. A reference case for an apartment building was used as a basis and was modeled according to architectural and constructional drawings while input data was used according to Sveby. It will also include the environmental certifications used in Sweden and specify their requirements regarding the thermal comfort, and each focus area as various environmental certifications have different assessment criteria’s. During this study it was found that we rarely take into account the thermal comfort in the same way we do with the energy consumption. It has also been found that in cases where the requirements for the thermal comfort exist, it is often insufficiently defined to provide one with a good perception of comfort. The requirements do, in other words, not take into account how well a building performs during a whole year but instead focuses on one instantaneous value. For the simulation a sensitivity analysis was made that revealed the importance and necessity of a clear standard for undefined variables to express the people’s assessment of thermal comfort. After the simulation part, the energy calculations were examined according to a review template from WSP Systems. This provided a basis for fair consideration. From the obtained results it was shown that floor heating and increasing the setpoint to 22 °C gave an increased thermal comfort but at the same time an increase in energy use. An HVAC system with a heat exchanger and radiators resulted in reduced energy use by about a third from the reference case and a slight increase in current thermal comfort. It also proved that the choice of an HVAC system with heat exchanger produced the highest annual energy savings. However one must take into account installation costs for different types of systems as opposed to when the setpoint is increased to 22 °C. Thus it becomes a cost issue and a critical parameter for selecting among these three types of solutions.
|
37 |
Nosná železobetonová konstrukce vícepodlažního obytného objektu / Load-bearing reinforced concrete structure of a multi-storey residential buildingBadány, Kristián January 2022 (has links)
The objective of the diploma thesis is a design and check of load-bearing concrete structure of multi-storey residential building. The building is located in Brno. The total ground plan’s dimensions are 39,32 x 22,58 metres, total height of the building in the highest point is 10,29 metres. The object is three-storey building with rectangular plan with partial basement designed as cast-in-place concrete frame and two above-ground floor designed as reinforced concrete walls and masonry walls. Load-bearing floor structures are designed as reinforced concrete slabs. Drawing documentation is included.
|
38 |
Development of a Model for Predicting the Transmission of Sonic Booms into Buildings at Low FrequencyRemillieux, Marcel C. 06 May 2010 (has links)
Recent progresses by the aircraft industry in the development of a quieter supersonic transport have opened the possibility of overland supersonic flights, which are currently banned by aviation authorities in most countries. For the ban to be lifted, the sonic booms the aircraft generate at supersonic speed must be acceptable from a human-perception point of view, in particular inside buildings. The problem of the transmission of sonic booms inside buildings can be divided in several aspects such as the external pressure loading, structure vibration, and interior acoustic response. Past investigations on this problem have tackled all these aspects but were limited to simple structures and often did not account for the coupled fluid-structure interaction. A more comprehensive work that includes all the effects of sonic booms to ultimately predict the noise exposure inside realistic building structures, e.g. residential houses, has never been reported. Thus far, these effects could only be investigated experimentally, e.g. flight tests.
In this research, a numerical model and a computer code are developed within the above context to predict the vibro-acoustic response of simplified building structures exposed to sonic booms, at low frequency. The model is applicable to structures with multiple rectangular cavities, isolated or interconnected with openings. The response of the fluid-structure system, including their fully coupled interaction, is computed in the time domain using a modal-decomposition approach for both the structural and acoustic systems. In the dynamic equations, the structural displacement is expressed in terms of summations over the "in vacuo" normal modes of vibration. The interior pressure is expressed in terms of summations over the acoustic modes of the rooms with perfectly reflecting surfaces (hard walls). This approach is simple to implement and computationally efficient at low frequency, when the modal density is relatively low.
The numerical model is designed specifically for this application and includes several novel formulations. Firstly, a new shell finite-element is derived to model the structural components typically used in building construction that have orthotropic characteristics such as plaster-wood walls, floors, and siding panels. The constitutive matrix for these types of components is formulated using simple analytical expressions based on the orthotropic constants of an equivalent orthotropic plate. This approach is computationally efficient since there is no need to model all the individual subcomponents of the assembly (studs, sheathing, etc.) and their interconnections. Secondly, a dedicated finite-element module is developed that implements the new shell element for orthotropic components as well as a conventional shell element for isotropic components, e.g. window panels and doors. The finite element module computes the "in vacuo" structural modes of vibration. The modes and external pressure distribution are then used to compute modal loads. This dedicated finite-element module has the main advantage of overcoming the need, and subsequent complications, for using a large commercial finite-element program. Lastly, a novel formulation is developed for the fully coupled fluid-structure model to handle room openings and compute the acoustic response of interconnected rooms. The formulation is based on the Helmholtz resonator approach and is applicable to the very low frequency-range, when the acoustic wavelength is much larger than the opening dimensions.
Experimental validation of the numerical model and computer code is presented for three test cases of increasing complexity. The first test structure consists of a single plaster-wood wall backed by a rigid rectangular enclosure. The structure is excited by sonic booms generated with a speaker. The second test structure is a single room made of plaster-wood walls with two double-panel windows and a door. The third test structure consists of the first room to which a second room with a large window assembly was added. Several door configurations of the structure are tested to validate the formulation for room openings. This latter case is the most realistic one as it involves the interaction of several structural components with several interior cavities. For the last two test cases, sonic booms with realistic durations and amplitudes were generated using an explosive technique. Numerical predictions are compared to the experimental data for the three test cases and show a good overall agreement.
Finally, results from a parametric study are presented for the case of the single wall backed by a rigid enclosure. The effects of sonic-boom shape, e.g. rise time and duration, and effects of the structure geometry on the fluid-structure response to sonic booms are investigated. / Ph. D.
|
39 |
REIMAGINING BUILDING EFFICACY: AN EXPLORATORY STUDYDomenique R Lumpkin (12639406) 17 June 2022 (has links)
<p>This dissertation focuses on the creation of a paradigm shift in building innovation. Challenges in achieving building energy-efficiency at scale highlight the complexity of the building performance problem, which is embedded with social, cultural, physical, environmental, and economic factors. Traditional approaches to building design have difficulty accounting for these multi-faceted variables and related longitudinal barriers and intangible impacts. Firstly, key stakeholders and their economic constraints change throughout time, and this variability is not traditionally considered upfront or addressed throughout a building’s operation. Secondly, buildings have social, cultural, environmental and economic implications that are difficult to quantify and evaluate against strictly functional design objectives. Therefore, current deeply technical and often system-specific building design strategies could benefit from whole-building solutions that account for this complexity and enable a paradigm shift in design toward human-centered outcomes (i.e., well-being, health, financial sustainability) and effective (i.e., equitable and sustainable) buildings. </p>
<p>To drive this shift, an impact-based innovation framework was employed to pursue system-level and ecosystem-level strategies to optimize longitudinal building value assessment and distribution. First, a grounded theory study was pursued which identified gaps in current design practice that miss underlying building subsystem interactions which influence building performance. A system-level taxonomy of the building was then defined, linking identified sub-system synergies to functional, emotional and social building benefits for inhabitants. Then, an exploratory mixed-methods study was pursued, yielding a longitudinal building value framework that helps characterize key stakeholders, building design choices, and shared efficacy metrics. Building on these inputs, a multi-stakeholder, longitudinal building value assessment model was developed. The model was tested on two residential building development scenarios, highlighting its ability to capture the true impact of buildings on affected stakeholders over time in terms of tangible and intangible building costs and benefits. Finally, business model innovation concepts were employed to identify specific changes in stakeholder value delivery and capture strategies that could redistribute building costs and benefits over time, and thereby facilitate a shift in the paradigm of design and value capture in the residential building industry. </p>
|
40 |
An intelligent system for vulnerability and remediation assessment of flooded residential buildingsFiener, Yusef January 2011 (has links)
Floods are natural phenomena which are a threat to human settlements. Flooding can result in costly repairs to buildings, loss of business and, in some cases, loss of life. The forecasts for climate change show a further increased risk of flooding in future years. Accordingly, the flooding of residential property has been observed as on the rise in the UK. It is difficult to prevent floods from occurring, but the effects of flooding can be managed in an attempt to reduce risks and costs of repair. This can be achieved through ensuring a good understanding of the problem, and thereby establishing good management systems which are capable of dealing with all aspects of the flood. The use of an intelligent system for assessment and remediation of buildings subjected to flooding damage can facilitate the management of this problem. Such a system can provide guidance for the assessment of vulnerability and the repair of flood damaged residential buildings; this could save time and money through the use of the advantages and benefits offered by knowledge base systems. A prototype knowledge base system has been developed in this research. The system comprises three subsystems: degree of vulnerability assessment subsystem; remediation options subsystem; and foundation damage assessment subsystem. The vulnerability assessment subsystem is used to calculate the degree of vulnerability, which will then be used by the remediation options subsystem to select remediation options strategy. The vulnerability assessment subsystem can subsequently be used to calculate the degree to which the building is vulnerable to damage by flooding even if it is not flooded. Remediation options subsystem recommended two strategy options: either ordinary remediation options in the case of vulnerability being low or, alternatively, resilience remediation options in the case of vulnerability being high. The foundation damage assessment subsystem is working alone and is used to assess the damage caused by flooding to the building s foundation, and to thereby recommend a repair option based on the damage caused and foundation type. The system has been developed based on the knowledge acquired from different sources and methods, including survey questionnaires, documents, interviews, and workshops. The system is then evaluated by experts and professionals in the industry. The developed system makes a contribution in the management and standardisation of residential building flooded damage and repair.
|
Page generated in 0.1165 seconds