• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Real-time Classification of Multi-sensor Signals with Subtle Disturbances Using Machine Learning : A threaded fastening assembly case study / Realtidsklassificering av multi-sensorsignaler med små störningar med hjälp av maskininlärning : En fallstudie inom åtdragningsmontering

Olsson, Theodor January 2021 (has links)
Sensor fault detection is an actively researched area and there are a plethora of studies on sensor fault detection in various applications such as nuclear power plants, wireless sensor networks, weather stations and nuclear fusion. However, there does not seem to be any study focusing on detecting sensor faults in the threaded fastening assembly application. Since the threaded fastening tools use torque and angle measurements to determine whether or not a screw or bolt has been fastened properly, faulty measurements from these sensors can have dire consequences. This study aims to investigate the use of machine learning to detect a subtle kind of sensor faults, common in this application, that are difficult to detect using canonical model-based approaches. Because of the subtle and infrequent nature of these faults, a two-stage system was designed. The first component of this system is given sensor data from a tightening and then tries to classify each data point in the sensor data as normal or faulty using a combination of low-pass filtering to generate residuals and a support vector machine to classify the residual points. The second component uses the output from the first one to determine if the complete tightening is normal or faulty. Despite the modest performance of the first component, with the best model having an F1-score of 0.421 for classifying data points, the design showed promising performance for classifying the tightening signals, with the best model having an F1-score of 0.976. These results indicate that there indeed exist patterns in these kinds of torque and angle multi-sensor signals that make machine learning a feasible approach to classify them and detect sensor faults. / Sensorfeldetektering är för nuvarande ett aktivt forskningsområde med mängder av studier om feldetektion i olika applikationer som till exempel kärnkraft, trådlösa sensornätverk, väderstationer och fusionskraft. Ett applikationsområde som inte verkar ha undersökts är det inom åtdragningsmontering. Eftersom verktygen inom åtdragningsmontering använder mätvärden på vridmoment och vinkel för att avgöra om en skruv eller bult har dragits åt tillräckligt kan felaktiga mätvärden från dessa sensorer få allvarliga konsekvenser. Målet med denna studie är att undersöka om det går att använda maskininlärning för att detektera en subtil sorts sensorfel som är vanlig inom åtdragningsmontering och har visat sig vara svåra att detektera med konventionella modell-baserade metoder. I och med att denna typ av sensorfel är både subtila och infrekventa designades ett system bestående av två komponenter. Den första får sensordata från en åtdragning och försöker klassificera varje datapunkt som antingen normal eller onormal genom att uttnyttja en kombination av lågpassfiltrering för att generera residualer och en stödvektormaskin för att klassificera dessa. Den andra komponenten använder resultatet från den första komponenten för att avgöra om hela åtdragningen ska klassificeras som normal eller onormal. Trots att den första komponenten hade ett ganska blygsamt resultat på att klassificera datapunkter så visade systemet som helhet mycket lovande resultat på att klassificera hela åtdragningar. Dessa resultat indikerar det finns mönster i denna typ av sensordata som gör maskininlärning till ett lämpligt verktyg för att klassificera datat och detektera sensorfel.
12

Contributions to the development of residual discretizations for hyperbolic conservation laws with application to shallow water flows

Ricchiuto, Mario 12 December 2011 (has links) (PDF)
In this work we review 12 years of developments in the field of residual based discretizations for hyperbolic problems and their application to the solution of the shallow water equations. Fundamental concepts related to the topic are recalled and he construction of second and higher order schemes for steady problems is presented. The generalization to time dependent problems by means of multi-step implicit time integration, space-time, and genuinely explicit techniques is thoroughly discussed. Finally, the issues of C-property, super consistency, and wetting/drying are analyzed in this framework showing the power of the residual based approach.
13

Adaptive least-squares finite element method with optimal convergence rates

Bringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.

Page generated in 0.0326 seconds