1 |
Retrofit design of a line-start permanent-magnet synchronous machine / Karen Sharon GarnerGarner, Karen Sharon January 2015 (has links)
Energy resources are under tremendous pressure with society’s ever increasing need for electricity.
However, resources are becoming scarce and the effect of our power generation on the environment is
cause for concern. The cost of electricity is also increasing and thus the need to reduce energy
consumption is apparent. Most electrical energy generated is consumed by electric motors. Most of
these motors are induction motors because they are reliable, efficient and durable. Though these
motors are highly efficient, there is still room for improvement when the strain on electrical energy is
taken into account. Constructing motors with better efficiency can result in a reduction in energy
consumption and cost savings to the consumer.
One method of increasing a motor’s efficiency is to use permanent magnets in the construction of the
motor’s core. Permanent magnets eliminate the excitation losses experienced by induction machines,
thereby increasing the motor’s efficiency. A retrofit design is considered because of the ease of
manufacturing for motor suppliers and the ability to apply the solution to existing operating induction
machines. The prototype will lay the foundation for future optimisation strategies. The optimised
design should provide improved efficiency with a minimum effect on the motors already operating in
industry.
The design process followed uses the design principles for inductions machines and for sizing
permanent magnets. The design is then verified through the use of finite element method software
packages, FEMM and ANSYS Maxwell®, and validated by performance testing. A comparison is
drawn between the calculated results and the results determined from the performance analysis. The
retrofit design performed as expected during the testing with some discrepancies in final values
attributed to the manufacturing process. However, the efficiency is lower than designed and requires
the implementation of machine optimisation strategies. / MSc (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
|
2 |
Retrofit design of a line-start permanent-magnet synchronous machine / Karen Sharon GarnerGarner, Karen Sharon January 2015 (has links)
Energy resources are under tremendous pressure with society’s ever increasing need for electricity.
However, resources are becoming scarce and the effect of our power generation on the environment is
cause for concern. The cost of electricity is also increasing and thus the need to reduce energy
consumption is apparent. Most electrical energy generated is consumed by electric motors. Most of
these motors are induction motors because they are reliable, efficient and durable. Though these
motors are highly efficient, there is still room for improvement when the strain on electrical energy is
taken into account. Constructing motors with better efficiency can result in a reduction in energy
consumption and cost savings to the consumer.
One method of increasing a motor’s efficiency is to use permanent magnets in the construction of the
motor’s core. Permanent magnets eliminate the excitation losses experienced by induction machines,
thereby increasing the motor’s efficiency. A retrofit design is considered because of the ease of
manufacturing for motor suppliers and the ability to apply the solution to existing operating induction
machines. The prototype will lay the foundation for future optimisation strategies. The optimised
design should provide improved efficiency with a minimum effect on the motors already operating in
industry.
The design process followed uses the design principles for inductions machines and for sizing
permanent magnets. The design is then verified through the use of finite element method software
packages, FEMM and ANSYS Maxwell®, and validated by performance testing. A comparison is
drawn between the calculated results and the results determined from the performance analysis. The
retrofit design performed as expected during the testing with some discrepancies in final values
attributed to the manufacturing process. However, the efficiency is lower than designed and requires
the implementation of machine optimisation strategies. / MSc (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
|
3 |
Simulation-based process design and integration for retrofitHernandez Enriquez, Aurora January 2010 (has links)
This research proposes a novel Retrofit Design Approach based on process simulation and the Response Surface Methodology (RSM).Retrofit Design Approach comprises: 1) a diagnosis stage in which the variables are screened and promising variables to improve system performance are identified through a sensitivity analysis, 2) an evaluation stage in which RSM is applied to assess the impact of those promising variables and the most important factors are determined by building a reduced model from the process response behaviour, and 3) an optimisation stage to identify optimal conditions and performance of the system, subject to objective function and model constraints. All these stages are simulation-supported. The main advantages of the proposed Retrofit Design Approach using RSM are that the design method is able to handle a large industrial-scale design problem within a reasonable computational effort, to obtain valuable conceptual insights of design interactions and economic trade-off existed in the system, as well as to systematically identify cost-effective solutions by optimizing the reduced model based on the most important factors. This simplifies the pathway to achieve pseudo-optimal solutions, and simultaneously to understand techno-economic and system-wide impacts of key design variables and parameters. In order to demonstrate the applicability and robustness of the proposed design method, the proposed Retrofit Design Approach has been applied to two case studies which are based on existing gas processing processes. Steady-state process simulation using Aspen Plus TM® has been carried out and the simulation results agree well with the plant data. Reduced models for both cases studies have been obtained to represent the techno-economic behaviour of plants. Both the continuous and discrete design options are considered in the retrofitting of the plant, and the results showed that the Retrofit Design Approach is effective to provide reliable, cost-effective retrofit solutions which yield to improvements in the studied processes, not only economically (i.e. cost and product recovery), but also environmentally linked (i.e. CO₂ emissions and energy efficiency). The main retrofitting solutions identified are, for the first case, column pressure change, pump-around arrangement and additional turbo-expansion capacity, while for the second case, columns pressure change, trays efficiency, HEN retrofit arrangements (re-piping) and onsite utility generation schemes are considered. These promising sets of retrofit design options were further investigated to reflect implications of capital investment for the retrofit scenarios, and this portfolio of opportunities can be very useful for supporting decision-making procedure in practice. It is important to note that in some cases a cost-effective retrofit does not always require structural modifications. In conclusion, the proposed Retrofit Design Approach has been found to be a reliable approach to address the retrofit problem in the context of industrial applications.
|
4 |
Computer Simulation and Optimization of the NOx Abatement System at the Radford Facility and Army Ammunition PlantSweeney, Andrew Jeffrey 18 April 2000 (has links)
This thesis discusses findings gained through work with the NOx abatement system at Radford Facility and Army Ammunition Plant (RFAAP). Removal of harmful substances from flue-gas emissions has garnered increased priority in the chemical industry in preceding decades, as governmental restrictions on these substances become more stringent and as national awareness concerning environmental quality and resource utilization continues to grow. These reasons make the study of NOx abatement an important and challenging endeavor.
This work concerns itself specifically with reduction of NOx in flue-gas emissions from stationary sources. First we present an overview of current technology and approaches to controlling NOx for stationary sources. Next, we focus in on one particular approach to control of NOx within the context of a case study of the technology used at the Radford Facility and Army Ammunition Plant. RFAAP employs a scrubber/absorber tower followed in series by a selective catalytic reduction (SCR) reaction vessel in their NOx abatement system. We use as the method of study computer simulations within ASPEN Plus, a process simulation software package for chemical plants.
We develop three different models with which to characterize NOx abatement at RFAAP, a conversion model, an equilibrium model and a kinetic model. The conversion-reaction model approximates the absorption and SCR reactions with constant percentage extent-of-reaction values. Though useful for initial investigation and mass balance information, we find the conversion model's insensitivity to process changes to be unacceptable for in-depth study of the case of NOx absorption and SCR. The equilibrium-reaction model works on the assumption that all the reactions reach chemical equilibrium. For the conditions studied here, we find the equilibrium model accurately simulates NOx absorption but fails in the case of SCR. Therefore, we introduce a kinetic-reaction model to handle the SCR. The SCR reactions prove to be highly rate-dependant and the kinetic approach performs well.
The final evolution of the ASPEN Plus simulation uses an equilibrium model for the absorption operation and a kinetic model for the SCR. We explore retrofit options using this combined model and propose process improvements. We end this work with observations of the entire project in the form of conclusions and recommendations for improving the operation of the NOx abatement system through process-parameter optimization and equipment-retrofit schemes.
By leading the reader through the process by which we arrived at a successful and highly informative computer model for NOx absorption and SCR, we hope to educate the reader on the subtleties of NOx abatement by absorption and SCR. We attempt to break down the numerous complex processes to present a less daunting prospect to the engineer challenged with the application of current NOx removal technology. In addition, we introduce the reader to the power and usefulness of computer modeling in instances of such complexity. The model teaches us about the details of the process and helps us develop concrete information for its optimization. Ideally, the reader could use a similar approach in tackling related operations and not confine the usefulness of this thesis to NOx absorption and SCR.
The audiences that we think would benefit from exposure to this thesis are the following:
• Environmental engineers with a NOx problem;
• Process engineers interested in optimization tools;
• Design engineers exploring flue-gas treatment options;
• Combustion engineer desiring to learn about SCR;
• Chemists and mathematicians intrigued by the complexities of NOx absorption chemistry. / Master of Science
|
5 |
Seismic Strengthening of Reinforced Concrete Columns with Ultra-high-strength Fiber-reinforced Concrete (UFC) Panels / 超高強度繊維補強コンクリート(UFC)パネルによる鉄筋コンクリート柱の耐震補強Lim, Sua 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24900号 / 工博第5180号 / 新制||工||1989(附属図書館) / 京都大学大学院工学研究科建築学専攻 / (主査)教授 西山 峰広, 教授 池田 芳樹, 教授 山本 貴士 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
6 |
Seismic Retrofit of Load Bearing URM Walls with Internally Placed Reinforcement and Surface-Bonded FRP SheetsSabri, Amirreza 22 June 2020 (has links)
Concrete block masonry is a common building material used worldwide, including Canada. Reinforced masonry buildings, designed according to the requirements of recent building codes, may result in seismically safe structures. However, unreinforced masonry (URM) buildings designed and constructed prior to the development of modern seismic design codes are extremely vulnerable to seismic induced damage. Replacement of older seismically deficient buildings with new and seismically designed structures is economically not feasible in most cases. Therefore, seismic retrofitting of deficient buildings remains to be a viable seismic risk mitigation strategy. Masonry load bearing walls are the most important elements of such buildings, potentially serving as lateral force resisting systems.
A seismic retrofit research program is currently underway at the University of Ottawa, consisting of experimental and analytical components for developing new seismic retrofit systems for unreinforced masonry walls. The research project presented in this thesis forms part of the same overall research program. The experimental component includes design, construction, retrofit and testing of large-scale load bearing masonry walls. Two approaches were developed as retrofit methodologies, both involving reinforcing the walls for strength and deformability. The first approach involves the use of ordinary deformed steel reinforcement as internally added reinforcement to attain reinforced masonry behaviour. The second approach involves the use of internally placed post-tensioning tendons to attain prestressed masonry behaviour. The analytical component of research consists of constructing a Finite Element computer model for nonlinear analysis of walls and conducting a parametric study to assess the significance of retrofit design parameters. The results have led to the development of a conceptual retrofit design framework for the new techniques developed, while utilizing the seismic provisions of the National Building Code of Canada and the relevant CSA material standards.
|
Page generated in 0.073 seconds