• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE INFLUENCE OF LEGUME CROPPING SEQUENCES ON ABOVEGROUND AND BELOWGROUND CARBON AND NITROGEN INPUTS IN PULSE CROP ROTATIONS

2015 November 1900 (has links)
Pulse crops grown in prairie crop rotations can provide greater carbon (C) inputs than non-pulse crops in rotation and reduce nitrogen (N) fertilizer requirements. The aim of this research was to estimate the aboveground (ABG) and belowground (BG) partitioning of C and N inputs to soil from continuous (three year) chickpea (CP), lentil (L) and pea (P) systems and from CP, L and P grown in rotation with mustard (M) or wheat (W). Stable isotope techniques were used to label plants grown in a greenhouse and track residue C and N inputs to the bulk soil, heavy fraction organic matter (HF), light fraction organic matter (LF), very light fraction organic matter (VLF), water extractable organic matter (WEOM), the soil microbial biomass (SMB) and the inorganic N pool. Repeat-pulse 13CO2-labeling and shoot 15N-labeling techniques revealed rhizodeposition of C and N was higher in non-continuous pulse crop systems (P-M-CP, P-W-CP, CP-W-CP, L-W-L, P-M-P and P-W-P), than in continuous CP, L and P. Belowground residue (roots and rhizodeposits) C made up 35%, 30% and 33% of total residue C in the continuous CP, L and P, respectively. Belowground residue C made up 50%, 43% and 25% of total residue C in CP, L and P in rotation with M or W, respectively. Belowground-N made up a greater proportion of total residue N than ABG-N in the continuous CP (56%), L (53%) and P (68%) systems, and in the non-continuous CP (76%), L (70%) and P (62%) rotations. Soil pool C and N did not differ between continuous CP, L or P, nor did it differ between the non-continuous CP, L or P rotations. There were no differences between M and W, as the ABG and BG residue C and N in the M pulse crop rotations did not differ from that of the W pulse crop rotations. There was a greater amount of C derived from rhizodeposition (CdfR) and N derived from rhizodeposition (NdfR) in the bulk soil and in the very light fraction organic matter (VLF) of the non-continuous pulse crop rotations, than in the continuous pulse crop systems. This research demonstrates the importance of BG inputs of C and N to soils from CP, L and P grown in rotation with M and W.
2

Belowground Contributions of Pea and Canola to Soil Nitrogen Pools and Processes

2013 June 1900 (has links)
Nitrogen (N) contained in roots and rhizodeposits represents a significant input of crop residue-N into soil that is often unaccounted, despite its contribution to the total N budget and its influence on soil nutrient cycling. Utilizing 15N-labeling methodologies under controlled conditions, the goal of this research was to quantify the input of belowground N (BGN), including rhizodeposits and roots, to soil and to investigate the influence of BGN on soil N cycling processes from the major pulse and oilseed crop grown across the Canadian prairies—namely, field pea and canola, respectively. Using continuous 15N2 labeling, the input of fixed-N to rhizosphere soil from pea plants amounted to less than 2% of the total plant N assimilated via fixation. Nodulation and root 15N enrichment were positively related to rhizosphere 15N enrichment, suggesting that the relatively low input of fixed-N to soil was due to low N fixation in this system. Shoot 15N-labeling techniques enabled a higher 15N enrichment in roots; as a result, rhizodeposition was detected in the rhizosphere as well as the surrounding bulk soil. Rhizodeposition accounted for 7.6 and 67% of plant N and BGN, respectively, in mature pea. Temporal changes in the pattern of rhizodeposition were detected as evidenced by differing 15N enrichment in rhizosphere versus bulk soils. In comparison to pea, a higher proportion of BGN contributed to the total residue-derived N from canola. The higher quantity of N rhizodeposition by canola was related to greater root biomass. However, pea rhizodeposition contributed more to soil inorganic N pools; this was sustained over time, as a higher proportion of pea BGN contributed to the growth of a subsequent wheat crop. In addition, wheat uptake of residue-derived N was twice as much from belowground compared to straw residues. Whereas the abundance of denitrifying bacterial communities in the rhizosphere was uncoupled from rhizodeposition and denitrification enzyme activity (DEA), root-derived 15N correlated with DEA in pea and canola. This research highlights the importance of belowground inputs from differing crop species on N budgets and soil N cycling.
3

Einfluss von Genotyp und Umwelt auf die N-Rhizodeposition von Leguminosen

Landgraf, Anke 01 February 2017 (has links) (PDF)
Im Rahmen der Untersuchungen wurde die N-Rhizodeposition verschiedener Futter- und Körnerleguminosen mittels Split-Root-Technik und kontinuierlicher 15N-Anreicherung quantifiziert. Anteilig an der gesamtpflanzlichen N-Menge unterschieden sich die durch Rhizodeposition abgegebenen N-Mengen zwischen den geprüften Leguminosenarten weder im Gewächshaus noch im Feld signifikant voneinander, so dass der Einflussfaktor Pflanzenart und –sorte auf die Höhe der spezifischen N-Rhizodeposition als eher gering einzuschätzen ist. Der Einfluss der Umwelt (Gewächshaus versus Freiland) auf die untersuchten Kenngrößen der Trockenmassen und N-Akkumulationen sowie der N-Rhizodeposition fiel hingegen sehr viel deutlicher aus. Die Untersuchungen zeigten zudem positive Zusammenhänge zwischen den N-Rhizodepositionsmengen und den Trockenmasseerträgen bzw. akkumulierten N-Mengen der Leguminosen.
4

Einfluss von Genotyp und Umwelt auf die N-Rhizodeposition von Leguminosen

Landgraf, Anke 02 December 2016 (has links)
Im Rahmen der Untersuchungen wurde die N-Rhizodeposition verschiedener Futter- und Körnerleguminosen mittels Split-Root-Technik und kontinuierlicher 15N-Anreicherung quantifiziert. Anteilig an der gesamtpflanzlichen N-Menge unterschieden sich die durch Rhizodeposition abgegebenen N-Mengen zwischen den geprüften Leguminosenarten weder im Gewächshaus noch im Feld signifikant voneinander, so dass der Einflussfaktor Pflanzenart und –sorte auf die Höhe der spezifischen N-Rhizodeposition als eher gering einzuschätzen ist. Der Einfluss der Umwelt (Gewächshaus versus Freiland) auf die untersuchten Kenngrößen der Trockenmassen und N-Akkumulationen sowie der N-Rhizodeposition fiel hingegen sehr viel deutlicher aus. Die Untersuchungen zeigten zudem positive Zusammenhänge zwischen den N-Rhizodepositionsmengen und den Trockenmasseerträgen bzw. akkumulierten N-Mengen der Leguminosen.
5

Vliv kořenových exudátů na dekompozici rozpuštěné organické hmoty v rašeliništi

ŽAMPACH, Ondřej January 2017 (has links)
The aim of this thesis was to assess the effect of root exudates on the biodegradability of dissolved organic matter. The experiment was done in laboratory conditions, using the dissolved organic matter sampled in a spruce swamp forest located in Šumava National Park and an artificial mixture of root exudates prepared according to known composition of root exudates released by peatland plants. Main hypothesis was that the input of root exudates into the peatland pore water will affect decomposition of less-degradable dissolved organic matter, with the resulting effect dependent on the quantity and quality (C:N ratio) of the input.
6

Effects of rhizosphere priming and microbial functions on soil carbon turnover

Lloyd, Davidson A. January 2015 (has links)
A major uncertainty in soil carbon studies is how inputs of fresh plant-derived carbon affect the turnover of existing soil organic matter (SOM) by so-called priming effects. Priming may occur directly as a result of nutrient mining by existing microbial communities, or indirectly via microbial population adjustments. Soil type and conditions may also influence the intensity and direction of priming effects. However the mechanisms are poorly understood. The objectives of this study were (1) to investigate how additions of labile C4 substrate affected SOM turnover in two contrasting unplanted C3 soils (clayey fertile from Temple Balsall, Warwickshire (TB) and sandy acid from Shuttleworth, Bedfordshire (SH) using13 C isotope shifts; (2) to investigate the influence of rhizodeposition from plant roots on SOM turnover in the same two soils planted with a C4 grass; (3) to assess an automated field system for measuring soil temperature, moisture and photosynthesis sensitivities of SOM turnover in the same two soils over diurnal to seasonal time scales. I used a combination of laboratory incubation, glasshouse and field experiments. In the soil incubation experiment, I made daily applications of either a maize root extract or sucrose to soil microcosms at rates simulating grassland rhizodeposition, and followed soil respiration (Rs) and its δ13 C over 19 days. I inferred the extent of priming from the δ13 C of Rs and the δ13 C of substrate and soil end-members. There were positive priming effects in both soils in response to the two substrates. In the SH soil there were no differences in priming effects between the substrates. However in the TB soil, sucrose produced greater priming effects than maize root extract, and priming effects with sucrose increased over time whereas with maize root extract declined after the first week. I explain these effects in terms of the greater fertility of the TB soil and resulting greater microbial nitrogen mineralization induced by priming. Because the maize root extract contained some nitrogen, over time microbial nitrogen requirements were satisfied without priming whereas with sucrose the nitrogen demand increased over time. In the glasshouse experiment, I planted C4 Kikuyu grass (Pennisetum clandestinum) in pots with the same two soils. The extent of rhizodeposition by the plants was altered by intermittently clipping the grass in half the pots (there were also unplanted controls) and priming effects were inferred from the δ13 C of Rs and the δ13 C of plant and soil end-members. Unclipped plants in both soils generated positive priming effects, while clipping reduced priming in TB soil and produced negligible PEs in SH soil. Microbial nutrient mining of SOM again explained the observed PEs in this experiment. Photosynthesis was a major driver of priming effects in the planted systems. In the third experiment, I found that the tested automated chamber system provided reliable measurements of Rs and net ecosystem exchange (NEE), and it was possible to draw relations for the dependency of Rs and NEE on key environmental drivers. Collectively, the results contribute to a better understanding of the mechanisms of priming effects and highlight possibilities for further research. The methods developed here will allow high temporal and spatial resolution measurements of Rs and NEE under field conditions, using stable isotope methods to separate fluxes into plant- and soil-derived components. Keywords: Soil respiration, soil moisture, soil temperature, Isotope ratio, maize root, flux chamber, climate change, organic matter, rhizodeposition.
7

Impacts of Rhizosphere CO₂ on Root Phosphoenolpyruvate Carboxylase Activity, Root Respiration Rate and Rhizodeposition in Populus spp.

Matarese, Dawn Marie 01 January 2010 (has links)
Roots live in and have evolved in a high carbon dioxide (CO₂) environment, yet relatively little research has been conducted on the impacts of soil dissolved inorganic carbon (DIC) on root metabolism. In this thesis, I explore the impacts of root-zone DIC on whole plant biomass accumulation, water use efficiency, and above-ground gas exchange. In addition, I explore the impacts of root-zone DIC on root processes: root PEP-Carboxylase activity, root respiration rate and root exudation of Krebs cycle organic acids. Root-zone DIC did not impact biomass accumulation, leaf gas exchange parameters or water use efficiency under the growth conditions examined. Root-zone DIC did increase root PEP-Carboxylase activity, but decreased root respiration (both CO₂ production and O₂ consumption) and decreased organic acid exudation rates. Increase in measurement CO₂ partial pressure was found to cause an instantaneous decrease in root CO₂ production, and I provide evidence that changes in root metabolism (CO₂ uptake by roots) are part of the cause of this phenomenon. A hypothesized relationship between root respiration rate and Krebs cycle organic acid exudation was not supported by my data. I conclude that root-zone DIC has important impacts on critical functions of root metabolism, and should be considered as an important abiotic factor much in the same way atmospheric CO₂ is for leaves and whole plant biology.
8

Structure of and carbon flux through soil food webs of temperate grassland as affected by land use management

Lemanski, Kathleen 24 October 2014 (has links)
No description available.

Page generated in 0.1003 seconds