• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sex-specific Acute Cerebrovascular Response to Photothrombotic Stroke in Mice Requires Rho-kinase

Raman-Nair, Joanna 21 June 2022 (has links)
With high energy consumption and a low capacity for energy storage, the brain is highly dependent on a continuous supply of oxygen and nutrients from the bloodstream. Ischemic stroke, caused by the occlusion of a cerebral blood vessel, compromises cerebral blood flow (CBF), resulting in detrimental effects on brain homeostasis, vascular function, and neuronal health. Sex differences in ischemic stroke are known, with women having lower rates of stroke due to a protective role of estrogens on vascular health, and more severe strokes following reduced estrogen production after menopause. Rho-associated protein kinase (ROCK), an important regulator of vascular tone, also regulates vascular function in a sex-specific manner, and its deletion is neuroprotective following ischemic stroke. The current study explores the overlapping roles of ROCK and endogenous hormone influence on the acute CBF response to a photothrombotic (PT) model of ischemic stroke in mice. CBF was measured following stroke in the somatosensory cortex in mice with a heterozygous deletion of the ROCK2 isoform (ROCK2+/-) and in wild-type (WT) littermates. To remove endogenous hormones, male mice were gonadectomized (Gdx) and female mice were ovariectomized (Ovx), and control animals received a sham surgery (“intact”) prior to stroke induction. Intact WT males showed a delayed CBF drop compared to intact WT females, where peak drop in CBF wasn’t observed until 48 hours following stroke. Gonadectomy in males did not alter this response, however ovariectomy in females produced a “male-like” response. ROCK2+/- males also showed such phenotypic response, and Gdx did not alter this response, suggesting ROCK2 deletion or endogenous male hormones do not alter CBF response in males in this stroke model. Alternatively, intact ROCK2+/- females showed a striking difference in CBF values compared to intact WT females, where they displayed higher CBF values immediately post-stroke and also showed a peak drop in CBF at 48 hours post-stroke. Ovx did not change the CBF response in ROCK2+/- females. Overall, there is a marked difference between males and females in their acute CBF responses to PT stroke, which appears to be mediated by endogenous female sex hormones and ROCK2. All groups except for intact WT females show a delayed drop in CBF values, reaching a maximal drop in CBF at 48 hours following stroke induction. This may be due to hyperreactivity of female platelets and upregulation of RhoA/ROCK signaling in female platelets. Further research is required to confirm this speculation. This study reveals important sex-differences and the involvement of ROCK2 in acute CBF responses to PT stroke in mice.
22

Structural and functional investigation of the trabecular outflow pathway

Yang, Chen-Yuan Charlie 15 June 2016 (has links)
Primary open-angle glaucoma (POAG) is a leading cause of blindness in the world. A primary risk factor for POAG is elevated intraocular pressure (IOP), caused by increased aqueous humor outflow resistance. Currently, lowering the IOP is the only effective way of treating glaucoma; however, the cause of increased outflow resistance remains unclear. This thesis will present a series of studies which investigated structures of the trabecular outflow pathway, including Schlemm’s canal endothelium, juxtacanalicular tissue, and trabecular beams, and their roles in regulating aqueous outflow resistance. The studies were conducted in both human and animal models using ex vivo ocular perfusion as well as in vitro microfluidic systems. In the first study, we investigated the effects of Y27632, a derivative of Rho-kinase inhibitor that is being developed as next generation glaucoma drug with unclear IOP lowering mechanism, on aqueous humor outflow dynamics and associated morphological changes in normal human eyes and laser-induced ocular hypertensive monkey eyes. In the second study, we developed and validated a novel three-dimensional microfluidic system using lymphatic microvascular endothelial cells. The microfluidic system can be used to study Schlemm’s canal endothelial cell dynamics and aqueous humor transport mechanism in the future. In the last study, we characterized the morphological structure, distribution, and thickness of the endothelial glycocalyx in the aqueous humor outflow pathway of human and bovine eyes. Together these studies will help define new directions for therapy that will help control IOP and preserve vision throughout a normal life span.
23

Protective Effect of Inhaled Rho-Kinase Inhibitor on Lung Ischemia-Reperfusion Injury / 吸入Rho-kinase阻害薬の肺虚血再灌流障害に対する保護効果

Ohata, Keiji 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20277号 / 医博第4236号 / 新制||医||1021(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 小池 薫, 教授 福田 和彦 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
24

Temporal Examination and Quantification of Fiber Cell Morphology and Arrangement in Chick and Mouse Lenses

Heimlich, Derek 01 October 2020 (has links)
No description available.
25

Effekte der präsymptomatischen Applikation der Rho-Kinase-Inhibitoren Fasudil und Y-27632 im SOD1-(G93A)-Mausmodell der Amyotrophen Lateralsklerose / Effects of presymptomatic application of Rho-kinase-Inhibitors Fasudil and Y-27632 in the SOD1(G93A) mouse model of amyotrphic lateral sclerosis

Suhr, Martin Erwin Hermann 21 February 2017 (has links)
No description available.
26

Rho-Kinase-Mediated Diphosphorylation of Myosin Regulatory Light Chain is a Unique Biochemical Mechanism in Human Uterine Myocytes

Aguilar, Hector N Unknown Date
No description available.
27

The effect of netarsudil on pore densities of Schlemm's canal inner wall endothelium in human eyes

Ramirez, Justin 11 February 2022 (has links)
BACKGROUND: Netarsudil, a Rho kinase and norepinephrine transport (NET) inhibitor, is a new FDA approved drug used for decreasing raised intraocular pressure (IOP) in ocular hypertensive and primary open-angle glaucoma (POAG) patients. Previous studies reported that netarsudil increased outflow facility and lowered IOP by increasing active outflow areas around the circumference of the eye and dilating the episcleral veins (ESV; Kiel and Kopczynski, 2015; Ren et al., 2016). However, the mechanisms by which netarsudil increases outflow facility have not yet been fully elucidated. Moreover, the effects of netarsudil on the inner wall (IW) endothelium I-pores and B-pores of the Schlemm’s canal (SC) have also not been investigated yet. AIM: The goal was to determine if netarsudil-treatment increased the effective filtration areas (EFA) by increasing pore density in both high- and non-flow type areas, compared to untreated control eyes. METHODS: In this study, the effects of netarsudil on the pore densities on IW of SC were investigated by serial block-face scanning electron microscopy (SBF-SEM). Two pairs of eyes were perfused with green fluorescent tracers in order to determine the outflow pattern prior to treatment. Then, one eye of each pair was perfused with netarsudil, while the fellow eye of each pair was perfused with vehicle solution. All eyes were then perfused with red fluorescent tracers in order to determine the outflow pattern once they were treated with netarsudil. Both pairs of eyes were perfused and fixed at 15 mmHg. Global imaging was performed for all eyes to visualize high- and non- flow areas in the trabecular meshwork (TM) and ESV’s. A SBF-SEM was used to image eight wedges of tissue including the IW of SC and TM (high- and non-flow areas from four eyes) for a total of 16,378 images. The study analyzed the percentage of pore-types (GV-associated I-pores, Non-GV associated I-pores, B-pores), the median pore spans, the GV-associated I-pore locations, and the pore densities (per IW nuclei and IW area) between the equivalent control and netarsudil-treated flow areas. RESULTS: In global images, an increase in high-flow areas were observed in netarsudil-treated eyes due to recruitment from low-flow and non-flow areas. A greater percentage of GV-associated I-pores, B-pores, and total pores were found in high-flow in contrast to non-flow areas in both control and netarsudil-treated eyes (all P ≤ 0.05). However, the percentage of GV-associated I-pores in non-flow areas were significantly greater in treated compared to control eyes (P ≤ 0.05). Qualitative observations from two pairs of eyes showed a trend of greater I-pore, B-pore, and total pore density/per IW nucleus and density/per IW surface area in high-flow in contrast to non-flow areas for both treated and control eyes. No difference in I-pore, B-pore, and total pore density/per IW nucleus and density /per IW surface area were observed in equivalent flow-type areas when comparing control and netarsudil-treated eyes. In addition, there was a significant greater percentage of I-pores located on the side of GVs than the top of GVs in all cases (P ≤ 0.05). CONCLUSIONS: Netarsudil increased high-flow areas. A greater pore density was found in high-flow in contrast to non-flow areas. Netarsudil also significantly increased the proportion of GV-associated I-pores in non-flow areas when compared to control eyes. Our results suggests that one mechanism of netarsudil increasing outflow facility is acting through recruiting the high-flow areas around the circumference of the eye, which is associated with higher pore density and increasing the proportion of GV-associated I-pores in non-flow areas.
28

Identification of Myosin Light Chain, Myosin Light Chain Phosphatase, and Rho Kinase in the Corpus Cavernosum of the Rat

Cosper, Marcus S. 11 June 2009 (has links)
No description available.
29

Responses of fibroblasts and chondrosarcoma cells to mechanical and chemical stimuli

Piltti, Juha January 2017 (has links)
Osteoarthritis is an inflammation-related disease that progressively destroys joint cartilage. This disease causes pain and stiffness of the joints, and at advanced stages, limitations to the movement or bending of injured joints. Therefore, it often restricts daily activities and the ability to work. Currently, there is no cure to prevent its progression, although certain damaged joints, such as fingers, knees and hips, can be treated with joint replacement surgeries. However, joint replacement surgeries of larger joints are very invasive operations and the joint replacements have a limited lifetime. Cell-based therapies could offer a way to treat cartilage injuries before the ultimate damage of osteoarthritis on articular cartilage. The development of novel treatments needs both a good knowledge of articular cartilage biology and tissue engineering methods. This thesis primarily investigates the effects of mechanical cyclic stretching, a 5% low oxygen atmosphere and the Rho-kinase inhibitor, Y-27632, on protein responses in chondrocytic human chondrosarcoma (HCS-2/8) cells. Special focus is placed on Rho-kinase inhibition, relating to its potential to promote and support extracellular matrix production in cultured chondrocytes and its role in fibroblast cells as a part of direct chemical cellular differentiation. The means to enhance the production of cartilage-specific extracellular matrix is needed for cell-based tissue engineering applications, since cultured chondrocytes quickly lose their cartilage-specific phenotype. A mechanical 8% cyclic cell stretching at a 1 Hz frequency was used to model a stretching rhythm similar to walking. The cellular stretching relates to stresses, which are directed to chondrocytes during the mechanical load. The stretch induced changes in proteins related, e.g., to certain cytoskeletal proteins, but also in enzymes associated with protein synthesis, such as eukaryotic elongation factors 1-beta and 1-delta. Hypoxic conditions were used to model the oxygen tension present in healthy cartilage tissue. Long-term hypoxia changed relative amounts in a total of 44 proteins and induced gene expressions of aggrecan and type II collagen, in addition to chondrocyte differentiation markers S100A1 and S100B. A short-term inhibition of Rho-kinase failed to induce extracellular matrix production in fibroblasts or in HCS-2/8 cells, while its long-term exposure increased the expressions of chondrocyte-specific genes and differentiation markers, and also promoted the synthesis of sulfated glycosaminoglycans by chondrocytic cells. Interestingly, Rho kinase inhibition under hypoxic conditions produced a more effective increase in chondrocyte-specific gene expression and synthesis of extracellular matrix components by HCS-2/8 cells. The treatment induced changes in the synthesis of 101 proteins and ELISA analysis revealed a sixfold higher secretion of type II collagen compared to control cells. The secretion of sulfated glycosaminoglycans was simultaneously increased by 65.8%. Thus, Rho-kinase inhibition at low oxygen tension can be regarded as a potential way to enhance extracellular matrix production and maintain a chondrocyte phenotype in cell-based tissue engineering applications.
30

Kinase pathways underlying muscarinic activation of colonic longitudinal muscle

Anderson, Charles Dudley, Jr. 22 April 2011 (has links)
The longitudinal muscle layer in gut is the functional opponent to the circular muscle layer during the peristalsis reflex. Differences in innervation of the layers allow for the contraction of one layer that corresponds with the simultaneous relaxation of the other, enabling the passage of gut contents in a controlled fashion. Differences in development have given the cells of the two layers differences in receptor populations, membrane lipid handling, and calcium handling profiles/behaviors. The kinase signaling differences between the two layers is not as well characterized. Upon activation of cells from the circular muscle layer, it is known that Rho kinase and ERK1/2 promote contraction, while CaMKK/AMPK and CaMKII perform inhibitory/self-inhibitory roles. Such behaviors are poorly understood in the longitudinal muscle layer. In longitudinal muscle strips, we measured muscarinic receptor-mediated contraction following incubation with kinase inhibitors. Upon comparison to control, contributions of Rho Kinase and ERK1/2 were similar to those seen in circular muscle. Inhibition of both of these enzymes leads to diminished contraction. However, CaMKK/AMPK and CaMKII have effects in longitudinal muscle opposite to their regulation in circular muscle – their inhibition also diminishes the contractile response. These contractile data from strips were supported by immunokinase assay measurements of MLCK activity from strip homogenates with and without kinase inhibition. Therefore, we suggest that the activities of CaMKK/AMPK and CaMKII in longitudinal muscle are indeed different from their regulatory roles in circular muscle, perhaps a consequence of the different calcium handling modalities of the two muscle types.

Page generated in 0.0495 seconds