• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase-Transformation-Induced Twins in Lanthanum Gallate Perovskite (LaGaO3)

Wang, Wei-Lin 05 July 2006 (has links)
Pressureless-sintered lanthanum gallate (LaGaO3) ceramics have been analyzed using X-ray diffractometry (XRD), scanning electron and transmission electron microscopy (SEM and TEM), and electron-backscatter diffraction (EBSD). Transformation-induced twin domains are generated by solid-state phase transition upon cooling from the rhombohedral (r, space group R c) to orthorhombic (o, space group Pnma) symmetry at 145oC. Four types of transformation twins {101}, {121},
2

Crystal growth of alpha-rhombohedral boron

Gao, Wei January 1900 (has links)
Master of Science / Department of Chemical Engineering / James H. Edgar / Pure boron exists in two main polymorphs, the common β-rhombohedral boron and the relatively rare α-rhombohedral boron. α-rhombohedral boron (α-B) possesses several extraordinary properties: self-healing from radiation damage and a high hole mobility. In addition, the [superscript]10B isotope has a large thermal neutron capture cross section. Such properties make it an excellent candidate for novel electronic device, such as direct energy conversion devices (alphacells and betacells) and neutron detectors. However, research on the properties and applications of α-B has been limited due to the difficulty to produce high quality α-B crystals of significant size. The preparation of α-rhombohedral boron is challenging for several reasons: first, α-rhombohedral boron has a low thermodynamic stability; it is only stable below 1100°C, at higher temperature β-rhombohedral boron is the stable polymorph. In addition, at elevated temperatures, boron is highly reactive, which make it is difficult to produce pure boron crystals. The primary goal of this research was to produce high quality α-B crystals of significant size. The main focus of this study was to explore the feasibility of producing α-B from a copper flux. Copper is a promising solvent for α-B crystal growth: the eutectic temperature of copper-boron is low, 996°C, and the phase diagram of copper-boron is relatively simple, and there are not many intermediate boride-copper compounds. In addition, copper is easily removed from crystals by etching with concentrated nitric acid. Last but not least, copper is less expensive than other metal solvents such as platinum. Boron crystal growth from a platinum solvent and vapor-liquid-solid growth by chemical vapor deposition were also performed for comparison. A series of crystals were grown over a range of initial boron concentrations (9.9 to 27.7 mole %) and cooling rates. Small irregular-shaped black crystals (>100μm) and well-faceted red crystals in various shapes, as large as 500 microns were produced. The crystals were characterized by optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction analysis, and Raman spectroscopy. The correlation between experiment results and experimental parameters (source materials, the purity of growth atmosphere, and crucible materials, etc.) are reported. Suggestions about further investigation for α-B crystal growth are proposed.
3

Etudes magnéto-Raman de systèmes - graphène multicouches et hétérostructures de graphène-nitrure de bore / Magneto-optical spectroscopy of multilayer graphene and graphene-hexagonal boron nitride hetero-structures

Henni, Younes 24 October 2016 (has links)
Comme le quatrième élément le plus abondant dans l’univers, le carbone joue un rôle important dans l’émergence de la vie sur la terre comme nous la connaissons aujourd’hui. L’ère industrielle a vu cet élément au cœur des applications technologiques en raison des différentes façons dont les atomes forment les liaisons chimiques, ce qui donne lieu à une série d’allotropies chacun ayant des propriétés physiques extraordinaires. Par exemple, l’allotrope le plus thermodynamiquement stable du carbone, le cristal de graphite, est connu pour être un très bon conducteur électrique, tandis que le diamant, très apprécié pour sa dureté et sa conductivité thermique, est néanmoins considéré comme un isolant électrique en raison de sa structure cristallographique différente par rapport au graphite. Les progrès de la recherche scientifique ont montré que les considérations cristallographiques ne sont pas le seul facteur déterminant pour une telle variété dans les propriétés physiques des structures à base de carbone. Ces dernières années ont vu l’émergence de nouvelles formes allotropiques de structures de carbone qui sont stables dans les conditions ambiantes, mais avec dimensionnalité réduite, ce qui entraîne des propriétés largement différentes par rapport aux structures en trois dimensions. Parmi ces nouvelles classes d’allotropes il y a le graphene, qui est le premier matériau à deux dimensions. L’isolation réussi de monocouches de graphène a contesté une croyance établie depuis longtemps en physique : le fait que les matériaux purement 2D ne peuvent pas exister dans les conditions ambiantes parce qu'ils sont instables en raison de l’augmentation des fluctuations thermiques lorsqu’ils se prolongent dans les 2D. Afin de minimiser son énergie, un matériau se brisera en îlots coagulées. Le graphène arrive cependant à surmonter cette barrière en formant des ondulations continues sur la surface du substrat et est stable même à température ambiante et pression atmosphérique. Une grande intention dans la communauté scientifique a été donnée au graphène, après les premiers résultats publiés sur les propriétés électroniques de ce matériau. Les propriétés fondamentales et mécaniques du graphène sont fascinants. Grace aux atomes de carbone qui sont emballés dans un mode sp2 hybridé, formant ainsi une structure de réseau hexagonal, le graphène possède le plus grand module de Young et la plus grande capacité d’étirement, en même temps des centaines de fois plus dur que l’acier. Il conduit la chaleur et l’électricité de manière très efficace. L’aspect le plus fascinant à propos du graphène est surement la nature de ses porteurs de charge à basse énergie. En effet, le graphène présente des bandes d’énergie linéaires au point de neutralité de charge, donnant aux porteurs de charge une nature relativiste. De nombreux phénomènes observés dans ce matériau sont des conséquences de la nature relativiste de ses porteurs. Transport balistique, conductivité optique universelle, absence de rétrodiffusion, et une nouvelle classe d’effet Hall quantique sont de bons exemples de phénomènes nouvellement découverts dans ce matériau. Il est cependant encore trop tôt pour affirmer que toutes les propriétés physiques du graphene sont bien comprises. Dans cette thèse, nous avons mené des expériences de spectroscopie magnéto-Raman pour répondre à certaines des questions ouvertes dans la physique du graphène, notamment l’effet de couplage de Coulomb sur le spectre d’énergie du graphène, et le changement dans les propriétés physiques du graphène multicouche en fonction de sa cristallographie. Nos echantillions ont été soumis à de forts champs magnétiques, appliqués perpendiculairement aux plans atomiques. Le spectre d’excitation sous champ magnétique montre un couplage entre ces excitations et les modes de vibratoires. Cette approche expérimentale permet de remonter à la structure de bande du graphene en champs nul, ainsi que de nombreuses autres propriétés du matériau. / As the fourth most abundant element in the universe, Carbon plays an important rolein the emerging of life in earth as we know it today. The industrial era has seen this element at the heart of technological applications due to the different ways in which carbon forms chemical bonds, giving rise to a series of allotropes each with extraordinary physical properties. For instance, the most thermodynamically stable allotrope of carbon, graphite crystal, is known to be a very good electrical conductor, while diamond very appreciated for its hardness and thermal conductivity is nevertheless considered as an electrical insulator due to different crystallographic structure compared to graphite. The advances in scientific research have shown that crystallographic considerations are not the only determining factor for such a variety in the physical properties of carbon based structures. Recent years have seen the emergence of new allotropes of carbon structures that are stable at ambient conditions but with reduced dimensionality, resulting in largely different properties compared to the three dimensional structures. Among these new classes of carbon allotropes is the first two-dimensional material: graphene.The successful isolation of monolayers of graphene challenged a long established belief in the scientific community: the fact that purely 2D materials cannot exist at ambient conditions. The Landau-Peierls instability theorem states that purely 2D materials are very unstable due to increasing thermal fluctuations when the material in question extends in both dimensions. To minimize its energy, the material will break into coagulated islands, an effect known as island growth. Graphene happens to overcome such barrier by forming continuous ripples on the surface of its substrate and thus is stable even at room temperature and atmospheric pressure.A great intention from the scientific community has been given to graphene, since 2004. Both fundamental and mechanical properties of graphene are fascinating. Thanks to its carbon atoms that are packed in a sp2 hybridized fashion, thus forming a hexagonal lattice structure, graphene has the largest young modulus and stretching power, yet it is hundreds of times stronger than steel. It conducts heat and electricity very efficiently, achieving an electron mobility as high as 107 cm−2V−1 s−1 when suspended over the substrate. The most fascinating aspect about graphene is the nature of its low energy charge carriers. Indeed, graphene has a linear energy dispersion at the charge neutrality, giving the charge carriers in graphene a relativistic nature. Many phenomena observed in this material are consequences of this relativistic nature of its carriers. Ballistic transport, universal optical conductivity, absence of back-scattering, and a new class of room temperaturequantum Hall effect are good examples of newly discovered phenomena in thismaterial. Graphene has become an active research area in condensed matter physics since 2004. It is however still early to state that all the physical properties of this material are well understood. In this thesis we conducted magneto-Raman spectroscopy experiments to address some of the open questions in the physics of graphene, such as the effect of electron-electron coupling on the energy spectrum of monolayer graphene, and the change in the physical properties of multilayer graphene as a function of the crystallographic stacking order. In all our experiments, the graphene-based systems have been subject to strong continuous magnetic fields, applied normal to the graphene layers. We study the evolution of its energy excitation spectra in the presence of the magnetic field, and also the coupling between these excitations and specific vibrational modes that are already in the system. This experimental approach allows us to deduce the band structure of the studied system at zero field, as well as many other lowenergy properties.
4

Vibrational And Mechanical Properties Of 10 Mol % Sc2o3-1 Mol % Ceo2- Zro2 Electrolyte Ceramics For Solid Oxide Fuel Cells

Lukich, Svetlana 01 January 2009 (has links)
Solid Oxide Fuel Cells (SOFCs) are emerging as a potential breakthrough energy conversion technology for clean and efficient production of electricity and heat from hydrogen and hydrocarbon fuels. Sc0.1Ce0.01ZrO2 electrolytes for Solid Oxide Fuel Cells are very promising materials because their high ionic conductivity in the intermediate temperature range 700°C-800°C. The vibration response of cubic and rhombohedral (β) 10 mol%Sc2O3 - 1 mol%CeO2 - ZrO2(Sc0.1Ce0.01ZrO2 ) both at room and high-temperatures is reported. The in-situ heating experiments and ex-situ indentation experiments were performed to characterize the vibrational behavior of these important materials. A temperature and stress-assisted phase transition from cubic to rhombohedral phase was detected during in-situ Raman spectroscopy experiments. While heating and indentation experiments performed separately did not cause the transition of the cubic phase into the rhombohedral structure under the performed experimental conditions and only broadened or strained peaks of the cubic phase could be detected, the heating of the indented (strained) surface leaded to the formation of the rhombohedral Sc0.1Ce0.01ZrO2. Both temperature range and strained zone were estimated by in situ heating and 2D mapping, where a formation of rhombohedral or retention of cubic phase has been promoted. The mechanical properties, such as Young’s modulus, Vickers hardness, indentation fracture resistance, room and high temperature four point bending strength and SEVNB fracture toughness along with the stress – strain deformation behavior in compression, of 10 mol% Sc2O3 – 1 mol % CeO2 - ZrO2 (ScCeZrO2) ceramics have been studied. The chosen composition of the ScCeZrO2 has very high ionic conductivity and, therefore, is very promising oxygen ion conducting electrolyte for the intermediate temperature Solid Oxide Fuel Cells. Therefore, its mechanical behavior is of importance and is presented in this study.
5

Influence of Manufacturing Regimes on the Phase Transformation of Dental Zirconia

Wertz, Markus, Hoelzig, Hieronymus, Kloess, Gert, Hahnel, Sebastian, Koenig, Andreas 05 May 2023 (has links)
Background: The influence of typical manufacturing regimes for producing fixed dental prostheses (FDPs) from yttria partly-stabilized zirconia polycrystals (3Y/4Y/5Y-TZP) on the phase composition is quantified. Methods: Fixed dental prostheses (FDPs) were designed using a CAD process and machined from different Y-TZP blanks from two manufacturers differing in yttria contents. Subsequent to sintering, the FDPs were glaze fired and air-blasted using alumina particles. Phase composition was determined with X-ray diffraction and quantified with Rietveld refinement. Results: The blanks from VITA Zahnfabrik (VITA YZ HT, VITA YZ ST, VITA YZ XT) and Dental Direct (DD Bio ZX2, DD cube ONE, DD cube X2) featured a rhombohedral portion with rather small crystallites and a small monoclinic portion for 3Y/4Y-TZPs, which increased after machining and disappeared after sintering. Glaze firing and air-blasting with alumina particles had no significant influence on the phase composition. Conclusion: The phase history of dental zirconia is revealed, which may have implications on further processing and aging of the FDP (e.g. low temperature degradation) in mouth.
6

Study of the magnetotransport behavior and electrical properties in the colossal magnetoresistance materials La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co)

Young, San-Lin 08 July 2002 (has links)
The hole-doped perovskite manganese oxide such as Ln1-xAxMnO3 (Ln = La, Nd, Pr, and A = Ca, Sr, Ba, Pb) is one of the most studied topics in the recent years due to the observation of colossal magnetoresistance (CMR). Basically, LaMnO3 has an almost insulating behavior and on antiferromagnetic arrangement. By substituting a divalent cation (A2+) in place of La3+, LaMnO3 can be driven into metallic and ferromagnetic state. Mixed valence of Mn 3+ / Mn4+ is needed for both metallic behavior and ferromagnetism in these materials. The CMR characteristic occurs in the ferromagnetic state. A systematic investigation of the structural, magnetic and electrical properties in the perovskite colossal magnetoresistance materials La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co) has presented in this thesis. By subatituting Nd, Pr, Y for the La and Co, Fe for the Mn, the substitution effects on the crystallographic deformation, magnetotransport behavior and electrical properties in these compounds have been studied. According to the results of this research, crystallographic distortion is induced by the substitution of smaller ions, Pr or Nd, onto the La-site. Powder $x$-ray diffraction patterns show a crystallographic transition from rhombohedral symmetry (R-3c) to orthorhombic (Pbnm) crystal structure as the doping content is increased. The increase of deformation from R-3c to Pbnm decreases the bond angle of Mn3+¡ÐO2-¡ÐMn4+ , increases the cant of Mn spin, weakens the double-exchange interaction and results in decrease of ferromagnetism, low ferromagnetic transition temperature Tc, eg electron bandwidth and conductivity. However, the great quantity of decrease in resistivity by an external field leads to the increase in the magnetoresistance ratio. We also find that the increase of saturation magnetization results from the contribution of magnetic ion of Pr or Nd. In addition. in contrast to substitution La by magnetic ion of Pr and Nd, the saturation magnetization is decreased as Y content is increased. The zero-field-cool (ZFC) and field-cool (FC) magnetic measurements indicate that the range of spin ordering for Y one is shorter than Pr one or Nd one with the same doping content. It is because of the small ionic radius of Y, which results in larger distortion, increases the bond angle of Mn3+¡ÐO2-¡ÐMn4+, and corresponds low ferromagnetic transition temperature. The distortion induced by Mn-site substitution is not obvious due to the similar radius of Mn, Co and Fe. Powder x-ray diffraction patterns show a single phase of rhombohedral symmetry (R-3c) for Co doped ststem and a slight crystallographic transition from rhombohedral (R-3c) to orthorhombic (Pbnm) symmetry for Fe doped system. Values of temperature dependence of magnetization indicate that the ferromagnetic double-exchange interaction is gradually substituted by the superexchange interaction. The ZFC-FC curves also indicate that long-range spin ordering is progressively substituted by the short-range spin ordering. The substitution of Mn by Co and Fe supresses the double-exchange interaction, decreases the ferromagnetism and the ferromagnetic transition temperature. Due to the synthesis of the substitution of Nd, Pr, Y for La and Co, Fe for Mn, the mechanism of substitution effects are proved different. The substitution of Nd, Pr and Y for La distorts the crystal, decreases the Mn3+¡ÐO2-¡ÐMn4+ bond angle, and results in the transition of properties, while the substitution of Co and Fe for Mn decrease the percentage of ferromagnetic Mn3+¡ÐO2-¡ÐMn4+. The purpose of this thesis is to clear up the role functions of all elements in these compounds and properties of these compounds. Based on the knowledge of these compounds, it would be helpful to control the physical mechanism and improve the characteristics on preparing their thin film devices.
7

Colloidal Synthesis and Photophysical Characterization of Group IV Alloy and Group IV-V Semiconductors: Ge1-xSnx and Sn-P Quantum Dots

Tallapally, Venkatesham 01 January 2018 (has links)
Nanomaterials, typically less than 100 nm size in any direction have gained noteworthy interest from scientific community owing to their significantly different and often improved physical properties compared to their bulk counterparts. Semiconductor nanoparticles (NPs) are of great interest to study their tunable optical properties, primarily as a function of size and shape. Accordingly, there has been a lot of attention paid to synthesize discrete semiconducting nanoparticles, of where Group III-V and II-VI materials have been studied extensively. In contrast, Group IV and Group IV-V based nanocrystals as earth abundant and less-non-toxic semiconductors have not been studied thoroughly. From the class of Group IV, Ge1-xSnx alloys are prime candidates for the fabrication of Si-compatible applications in the field of electronic and photonic devices, transistors, and charge storage devices. In addition, Ge1-xSnx alloys are potentials candidates for bio-sensing applications as alternative to toxic materials. Tin phosphides, a class of Group IV-V materials with their promising applications in thermoelectric, photocatalytic, and charge storage devices. However, both aforementioned semiconductors have not been studied thoroughly for their full potential in visible (Vis) to near infrared (NIR) optoelectronic applications. In this dissertation research, we have successfully developed unique synthetic strategies to produce Ge1-xSnx alloy quantum dots (QDs) and tin phosphide (Sn3P4, SnP, and Sn4P3) nanoparticles with tunable physical properties and crystal structures for potential applications in IR technologies. Low-cost, less-non-toxic, and abundantly-produced Ge1-xSnx alloys are an interesting class of narrow energy-gap semiconductors that received noteworthy interest in optical technologies. Admixing of α-Sn into Ge results in an indirect-to-direct bandgap crossover significantly improving light absorption and emission relative to indirect-gap Ge. However, the narrow energy-gaps reported for bulk Ge1-xSnx alloys have become a major impediment for their widespread application in optoelectronics. Herein, we report the first colloidal synthesis of Ge1-xSnx alloy quantum dots (QDs) with narrow size dispersity (3.3±0.5 – 5.9±0.8 nm), wide range of Sn compositions (0–20.6%), and composition-tunable energy-gaps and near infrared (IR) photoluminescence (PL). The structural analysis of alloy QDs indicates linear expansion of cubic Ge lattice with increasing Sn, suggesting the formation of strain-free nanoalloys. The successful incorporation of α-Sn into crystalline Ge has been confirmed by electron microscopy, which suggests the homogeneous solid solution behavior of QDs. The quantum confinement effects have resulted in energy gaps that are significantly blue-shifted from bulk Ge for Ge1-xSnx alloy QDs with composition-tunable absorption onsets (1.72–0.84 eV for x=1.5–20.6%) and PL peaks (1.62–1.31 eV for x=1.5–5.6%). Time-resolved PL (TRPL) spectroscopy revealed microsecond and nanosecond timescale decays at 15 K and 295 K, respectively owing to radiative recombination of dark and bright excitons as well as the interplay of surface traps and core electronic states. Realization of low-to-non-toxic and silicon-compatible Ge1-xSnx QDs with composition-tunable near IR PL allows the unprecedented expansion of direct-gap Group IV semiconductors to a wide range of biomedical and advanced technological studies. Tin phosphides are a class of materials that received noteworthy interest in photocatalysis, charge storage and thermoelectric devices. Dual stable oxidation states of tin (Sn2+ and Sn4+) enable tin phosphides to exhibit different stoichiometries and crystal phases. However, the synthesis of such nanostructures with control over morphology and crystal structure has proven a challenging task. Herein, we report the first colloidal synthesis of size, shape, and phase controlled, narrowly disperse rhombohedral Sn4P3, hexagonal SnP, and amorphous tin phosphide nanoparticles (NPs) displaying tunable morphologies and size dependent physical properties. The control over NP morphology and crystal phase was achieved by tuning the nucleation/growth temperature, molar ratio of Sn/P, and incorporation of additional coordinating solvents (alkylphosphines). The absorption spectra of smaller NPs exhibit size-dependent blue shifts in energy gaps (0.88–1.38 eV) compared to the theoretical value of bulk Sn3P4 (0.83 eV), consistent with quantum confinement effects. The amorphous NPs adopt rhombohedral Sn4P3 and hexagonal SnP crystal structures at 180 and 250 °C, respectively. Structural and surface analysis indicates consistent bond energies for phosphorus across different crystal phases, whereas the rhombohedral Sn4P3 NPs demonstrate Sn oxidation states distinctive from those of the hexagonal and amorphous NPs owing to complex chemical structure. All phases exhibit N(1s) and ʋ(N-H) energies suggestive of alkylamine surface functionalization and are devoid of tetragonal Sn impurities.
8

Synthesis, adsorption and catalysis of large pore metal phosphonates

Pearce, Gordon M. January 2010 (has links)
The synthesis and properties of metal phosphonates prepared using piperazine-based bisphosphonic acids have been investigated. The ligands N,N’-piperazinebis(methylenephosphonic acid) (H₄L), and the 2-methyl (H₄L-Me) and 2,5-dimethyl (H₄L 2,5-diMe) derivatives have been prepared using a modified Mannich reaction. Hydrothermal reaction of gels prepared from metal (II) acetates and the bisphosphonic acids results in the synthesis of four structures: STA-12, Ni VSB-5, Co H₂L.H₂O and Mg H₂L. STA-12, synthesised by reaction of Mn, Fe, Co or Ni acetate with H₄L or H₄L-Me, has been investigated further. STA-12 crystallises in the space group R⁻₃, and Ni STA-12 is the most crystalline version. Its structure was solved from synchrotron data (a = b = 27.8342(1) Å, c = 6.2421(3) Å, α = β = 90°, γ = 120°), and it has large 10 Å hexagonal shaped pores. Helical chains of Ni octahedra are coordinated by the ligands, resulting in phosphonate tetrahedra pointing towards the pore space. Water is present, both coordinated to the Ni²⁺ cations and physically adsorbed in the pores. Mixed metal structures based on Ni STA-12, where some Ni is replaced in the gel by another divalent metal (Mg, Mn, Fe or Co) can also be synthesised. Dehydration of STA-12 results in two types of behaviour, depending on the metal present. Rhombohedral symmetry is retained on dehydration of Mn and Fe STA-12, the a cell parameter decreasing compared to the as-prepared structures by 2.42 Å and 1.64 Å respectively. Structure solution of dehydrated Mn STA-12 indicates changes in the torsion angles of the piperazine ring bring the inorganic chains closer together. Fe and Mn STA-12 do not adsorb N₂, which is thought to be due to the formation of an amorphous surface layer. Dehydration of Ni and Co STA-12 causes crystallographic distortion. Three phases were isolated for Ni STA-12: removal of physically adsorbed water results in retention of rhombohedral symmetry, while dehydration at 323 K removes some coordinated water forming a triclinic structure. A fully dehydrated structure (dehydrated at 423 K) was solved from synchrotron data (a = 6.03475(5) Å, b = 14.9156(2) Å, c = 16.1572(7) Å, α = 112.5721(7)°, β = 95.7025(11)°, γ = 96.4950(11)°). The dehydration mechanism, followed by UV-vis and Infra-red spectroscopy, involves removal of water from the Ni²⁺ cations and full coordination of two out of three of the phosphonate tetrahedra forming three crystallographically distinct Ni and P atoms. No structural distortion takes place on dehydration of Ni and Co STA-12 prepared using the methylated bisphosphonate, and the solids give a higher N₂ uptake as a result. Dehydrated Ni and Co STA-12 were tested for adsorption performance for fuel related gases and probe molecules. Investigations were undertaken at low temperature with H₂, CO and CO₂, and ambient temperature with CO₂, CH₄, CH₃CN, CH₃OH and large hydrocarbons. Due to the presence of lower crystallinity, Co STA-12 has an inferior adsorption performance to Ni STA-12, although it has similar adsorption enthalpies for CO₂ at ambient temperature (-30 to -35 kJ mol⁻¹). Ni STA-12 adsorbs similar amounts of CO₂ and N₂ at low temperature, indicating the adsorption mechanisms are similar. Also, it adsorbs 10 × more CO₂ than CH₄ at low pressure, meaning it could be used for separation applications. Ni STA-12 adsorbs 2 mmol g⁻¹ H₂ with an enthalpy of -7.5 kJ mol⁻¹, the uptake being due to adsorption on only one-third of the Ni²⁺ cations. The uptake for CO is 6 mmol g⁻¹, with adsorption enthalpies ranging from -24 to -14 kJ mol⁻¹. This uptake is due to adsorption on all the Ni²⁺, meaning the adsorption enthalpies are high enough to allow the structure to relax. This is also observed for adsorption of CH₃CN and CH₃OH, where there is a return to rhombohedral symmetry after uptake. The adsorption sites in dehydrated Ni and Co STA-12 were investigated via Infra-red spectroscopic analysis of adsorbed probe molecules (H₂, CO, CO₂, CH₃CN and CH₃OH). The results indicate the adsorption sites at both low and ambient temperature are the metal cations and the P=O groups. The metal cation sites are also characterised as Lewis acids with reasonable strength. STA-12 was shown to have acidic activity for the liquid phase selective oxidations of 1-hexene and cyclohexene, although there is evidence active sites are coordinated by products and/or solvents during the reaction. STA-12 also demonstrates basic activity for the Knoevenagel condensation of ethyl cyanoacetate and benzaldehyde. Modification of STA-12 by adsorption of diamine molecules causes a slight increase in the basicity, and the highest conversions are where water and diamine molecules are both present.
9

Theoretical investigation of size effects in multiferroic nanoparticles

Allen, Marc Alexander 05 August 2020 (has links)
Over the last two decades, great progress has been made in the understanding of multiferroic materials, ones where multiple long-range orders simultaneously exist. However, much of the research has focused on bulk systems. If these materials are to be incorporated into devices, they would not be in bulk form, but would be miniaturized, such as in nanoparticle form. Accordingly, a better understanding of multiferroic nanoparticles is necessary. This manuscript examines the multiferroic phase diagram of multiferroic nanoparticles related to system size and surface-induced magnetic anisotropy. There is a particular focus on bismuth ferrite, the room-temperature antiferromagnetic-ferroelectric multiferroic. Theoretical results will be presented which show that at certain sizes, a bistability develops in the cycloidal wavevector. This implies bistability in the ferroelectric and magnetic moments of the nanoparticles. This novel magnetoelectric bistability may be of use in the creation of an electrically-written, magnetically-read memory element. / Graduate

Page generated in 0.4374 seconds