31 |
A New Approach to the Development of an RSV Anti-viral Targeted Nanocarrier for Dual Inhibition of Viral Infection and ReplicationSinger, Anthony N. 29 June 2018 (has links)
Respiratory Syncytial Virus (RSV) is a potentially life-threatening respiratory pathogen that infects approximately 64 million children and immunocompromised adults globally per year. Currently, there is a need for prophylactic and therapeutic approaches effective against primary and secondary RSV infections. This project focuses on the development of a simple, smart, and scalable anti-RSV nanotherapeutic that combines novel cellular antiviral defense mechanisms targeting the inhibition of viral fusion and replication. An ICAM-1 targeted liposomal nanocarrier will be synthesized and coated with a layer of chitosan containing the anti-fusion HR2-D peptide as an extracellular defense mechanism. Additionally, chitosan complexed to dual expressing short hairpin RNA (shRNA) recombinant plasmids will be encapsulated within the nanocarrier, and provide an intracellular defense mechanism that will interfere with the expression of the NS1 and P proteins. In combination, both defense mechanisms are expected to induce a synergistic anti-RSV effect that will surpass those of conventional therapeutics. Through this research, the NS1 and P containing plasmid (pSH-NS1-P) was cloned, and the nanotherapeutic was successfully synthesized. Based on the acquired results, pSH-NS1-P was shown to express anti-RSV effects, and it was also concluded that both inserts were producing active shRNA. Additionally, the anti-RSV efficiency of HR2-D was confirmed. Overall, this research will lead to development of a dual-mechanistic anti-viral nanotherapeutic.
|
32 |
The role of a viral microRNA and RNA interference during viral replication in mammalian cellsSeo, Gil Ju 04 March 2014 (has links)
RNA interference (RNAi) is an evolutionarily conserved process that regulates gene expression. Host cells and viruses interact in many ways, including through miRNAs and RNAi. Viral miRNAs are encoded when viruses, specially including the the polyoma and herpes families, are transcribed in the nucleus. Some viral miRNAs function to regulate host or viral gene expression. Most viral miRNAs’ functions are not known, however, in great detail. A miRNA can be encoded late during infection, as it is by SV40, a model polyomavirus. This downregulates early viral gene expression by directing mRNA RISC-mediated cleavage. As more polyomaviruses are discovered that are associated with human disease, it becomes more important to understand their function and to uncover whether these emerging viruses encode miRNAs. The work presented here shows the discovery of several viral miRNAs in human polyomaviruses—JCV, BKV, and MCV. In addition, I found that viral miRNAs have the evolutionarily conserved function of negatively regulating viral early gene transcripts at a late stage in the infection. During viral replication, viruses utilize the miRNA components of RNAi. However, in invertebrate organisms RNAi also actively defends against viral infection. It is still being debated, though, whether RNAi plays an antiviral role in mammalian cells. Should it be true that RNAi is an antiviral response in mammalian cells, then what is predicted by such a scenario is inconsistent with my studies. I have found that RNAi is strongly inhibited in the early stages after viral infection. Studies with a chemical mimic of viral infection (poly I:C) imply that the innate cellular immune response is responsible for this inhibition. I investigated the molecular changes, in response to viral infection, (e.g. poly ADP-ribosylation of Ago2) in the RNA-induced silencing complex (RISC). I determined that the inhibition of RNAi is brought about by components of the innate response. Completion of this study details a previously unknown “cross talk” between RNAi and the host innate immune response in mammalian cells. Furthermore, I found mir-17 family attenuates a subclass of interferon-stimulated genes. An understanding of viral miRNA and RNAi offers a clue as to we can use molecular intervention for viral infections. / text
|
33 |
Identifying functions of Down syndrome-related genes using RNA interference in C. elegansGriffith, Allison Mooney 11 February 2011 (has links)
Down syndrome is one of the most common genetic disorders, resulting in a range of neurological and neuromuscular disabilities. Although the presence of specific disabilities varies among individuals with Down syndrome, all individuals with Down syndrome are born with hypotonia (low muscle tone) and over half with congenital heart defects. Later in life, all individuals demonstrate intellectual disabilities to varying degrees, while many also develop early-onset Alzheimer’s disease. While the cause of Down syndrome is known to be a triplication of the 21st chromosome, it is unknown how this extraneous genetic material causes the development of these phenotypes. We have begun research into the biological basis of these disabilities using the tiny nematode, Caenorhabditis elegans as a genetic model. We used the technique RNA interference (RNAi), which allows us to study the in vivo function of genes by knocking down their expression one at a time in a living, behaving animal. We have used this technique to systematically study the in vivo function for genes involved in Down syndrome. To this end, we identified and knocked down C. elegans genes with sequence similarity to 67% of genes on the human 21st chromosome genes. We used these RNAi-treated worms to investigate the neuromuscular function of human chromosome 21 gene equivalents by assaying locomotion and pharyngeal pumping in a blinded screen. We used locomotion as a measure of neurological and neuromuscular function, while we used pharyngeal pumping as a model for cardiac function. We also performed an aldicarb screen to examine the role of some of these genes in the function of the synapse. Our experiments have provided valuable insight into the in vivo function of the vast majority of genes on the human 21st chromosome. This will be vital to identify genes that are potentially involved in eliciting Down syndrome-related phenotypes, laying the groundwork for further studies into the neurobiology of Down Syndrome. / text
|
34 |
GROUP 1 LATE EMBRYOGENESIS ABUNDANT (LEA) PROTEINS CONTRIBUTE TO STRESS TOLERANCE IN ARTEMIA FRANCISCANAToxopeus, Jantina 07 March 2014 (has links)
The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis – life without water. This study examines the function of group 1 Late Embryogenesis Abundant (LEA) proteins, hydrophilic unstructured proteins which accumulate in the stress-tolerant cysts of A. franciscana. Group 1 LEA proteins were knocked down in cysts using RNA interference. Cysts without group 1 LEA proteins exhibited low survival following desiccation and/or freezing, suggesting a role for these proteins in tolerance of low water conditions. In contrast, cysts with or without group 1 LEA proteins responded similarly to hydrogen peroxide exposure , indicating little to no function in reducing damage due to oxidative stress. This is the first in vivo functional study of group 1 LEA proteins in an animal, and may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications.
|
35 |
Structural characterization of the minimal human RISC-loading complexSchell, Stephanie 11 March 2013 (has links)
Die Genexpression ist die Voraussetzung für die Proteinbiosynthese in allen Zellen. Eine schnelle und feingesteuerte Kontrolle der Genexpression, die Genregulation, ist dabei als Reaktion auf Umweltveränderungen von großer Bedeutung. Unter Zuhilfenahme von kleinen RNAs spielen die RNA-Interferenz (RNAi) und verwandte Geninaktivierungsprozesse (gene silencing pathways) eine wichtige Rolle bei der Genregulation in Eukaryoten. Die gezielte Abschaltung von Genen durch RNAi wird durch die Erzeugung von kleinen doppelsträngigen RNAs (dsRNAs) in sogenannten RNA-induced-silencing complexes (RISCs) initiiert. Es konnte gezeigt werden, dass ein minimaler H. sapiens Komplex, der RISC -loading -Komplex (RLC), bestehend aus Dicer , Ago2 und TRBP2, in der Lage ist, Vorläufer-RNAs in etwa 21-23 Nukleotid lange dsRNAs zu zerkleinern, diese in ihre Einzelstränge zu trennen, den entsprechenden Führungsstrang auf Ago2 zu laden und eine komplementäre Ziel-mRNA endonukleolytisch zu schneiden. Somit kann dieser minimale Komplex die Verarbeitung der Vorläufer-RNA in kleine dsRNAs durch Dicer mit der Beladung dieser kleinen RNA-Produkte auf Ago2 verbinden/koppeln. Innerhalb des RLC wirken Dicer und Ago2 als Endoribonukleasen, während das dsRNA-Bindungsprotein TRBP2 die Dicer-RNA Komplexe zu Ago2 rekrutiert und für die Beladung der entsprechenden kleinen RNAs in den Komplex und auf Ago2 wichtig ist. Strukturinformationen des RLCs, der Subkomplexe sowie die einzelnen RLC-Proteine sind kaum vorhanden, und über die RNA-Transfermechanismen innerhalb des RLCs ist wenig bekannt.
Innerhalb dieser Arbeit wurde ein Expressions- und Reinigungssystem für die einzelnen rekombinanten Proteine etabliert. Die menschlichen Proteine Dicer und Ago2 wurden als N-terminal Hexahistidin markierte Proteine in Sf9- bzw. High Five-Insektenzellen hergestellt, und menschliches TRBP2 wurde als N-terminal GST-markiertes Protein in E. coli BL21(DE3)Star-Zellen exprimiert. Die einzelnen Proteine wurden gereinigt und der RLC präpariert. Der RLC und dessen Komponenten wurden strukturell durch makromolekulare Röntgenkristallographie und Einzelpartikel Elektronenmikroskopie untersucht. Da die Kristallisation von diesem großen und hochflexiblen Komplex während dieser Arbeit nicht möglich war, wurden die Hauptstrukturarbeiten am RLC mit Hilfe von Einzelpartikel Elektronenmikroskopie-Studien durchgeführt. So konnte eine dreidimensionale Struktur des H. sapiens RLCs mit einer Auflösung von 22,8 Å rekonstruiert werden. Diese Rekonstruktion zeigt, dass der RLC eine C- förmige Gestalt mit verschiedenen flexiblen Regionen aufweist. Ein Vergleich mit einer früheren Rekonstruktion des RLC zeigt, dass die in dieser Arbeit bestimmte Struktur des RLC (RNA-gebundener Komplex) eine offenere Konformation einnimmt. Zusätzlich lässt die erreichte höhere Auflösung die Bestimmung neuer struktureller Details, des RLC zu, so dass einzelne Domänen erkennbar sind. Um die RLC-Komponenten innerhalb der hier bestimmten RLC-Rekonstruktion zu lokalisieren, sollten Referenzdichten der Subkomplexe und von Dicer berechnet werden. Aufgrund der hohen Heterogenität der Subkomplexe und von rekombinantem Dicer, waren zuverlässige Rekonstruktionen bisher nicht möglich. Die in dieser Arbeit bestimmte Struktur des humanen RLC und weitere in der Zwischenzeit erlangte biochemische und strukturelle Ergebnisse anderer Gruppen, bedingen ein neues mögliches Modell für die RNA-Transfer–Mechanismen innerhalb des RLCs, welches diskutiert wird.
Das große human Dicer Protein enthält eine N-terminale DExD/H-Helikase Domäne, dessen Funktion noch immer unklar ist. Interessanterweise interagiert diese Domäne mit TRBP2. Mit Hilfe dieser Interaktion wird die Endonuklease-Aktivität von Dicer aktiviert. Um die Wechselwirkung zwischen Dicer und TRBP2 im Detail zu verstehen, wurden in dieser Arbeit zusätzlich zu dem vollständigen Dicer-TRBP2 Komplex, minimale Dicer-TRBP2 Komplexes für strukturelle Analysen präpariert. Ein Atommodell der Interaktionsfläche mit verschiedenen minimalen Dicer-TRBP2 Komplexen konnte im Rahmen dieser Arbeit nicht erhalten werden. Es kann aber gezeigt werden, dass dieses Dicer-Fragment die Bindung von TRBP2 zu einzelsträniger RNA vermindert, was auf eine Rolle von TRBP2 bei der Substratwahl von Dicer schließen lässt.
H. sapiens TRBP2 besitzt drei dsRBDs, die für RNA- und Proteinbinding sowie die eigene Homodimerisierung verantwortlich sind. Im Rahmen dieser Arbeit konnte die Kristallstruktur der zweiten dsRNA-Bindungsdomäne (dsRBD2) von TRBP2 gelöst und bis zu einer Auflösung von 2.28 Å verfeinert werden. Die Domäne hat eine typische α-β-β-β-α dsRBD Faltung, wobei die α-Helices gegen eine Seite des dreisträngigen antiparallelen β-Faltblattes packen. Die asymmetrische Einheit enthält vier Moleküle der dsRBD2, die untereinander zwei verschiedene Dimerisierungstellen bilden. Durchgeführte SAXS- und MALS-Messungen zeigen allerdings, dass die dsRBD2 in Lösung als Monomer vorliegt. Die identifizierten Dimerisierungsstellen scheinen daher nur Kristallisationsartefakte zu sein. Die Ergebnisse in dieser Arbeit deuten darauf hin, dass nicht die dsRBD2 allein sondern auch die Loop-Regionen zwischen den dsRBDs von hTRBP2 für die Dimerisierung wichtig sind. Ein Vergleich dieser Struktur mit der zuvor gelösten Struktur der dsRBD2 von TRBP2 im Komplex mit einem kurzen CG-Duplex zeigt, dass RNA-induzierte strukturelle Umlagerungen im Bereich der RNA-Bindungsstellen innerhalb der Domäne möglich sind. Zusätzlich zeigt die ermittelte SAXS Struktur der dsRBD2, dass genau diese Regionen, welche für RNA-Bindungen wichtig sind, sehr flexibel sind und so die Bindung von verschiedenen RNA-Substraten erlauben.
|
36 |
Silencing mutant Huntingtin by RNA interference for the treatment of Huntington DiseaseWagner, Laura A. 11 1900 (has links)
Huntington Disease (HD) is a dominantly inherited neurological disease attributed to a CAG expansion within the HD gene. The HD mutation gives rise to a polyglutamine expansion in exon 1 of the protein huntingtin (Htt). Since the discovery of the HD mutation in 1993, various HD gene mouse models have been developed to contain either fragments or full-length copies of the mutant HD gene. The existence of these HD mouse models enables focused therapeutic testing to develop potential treatments for HD. RNA interference (RNAi) therapy is a targeted gene silencing approach whereby synthetic RNA constructs are shuttled into the cell by viral vectors and used by the cell’s endogenous RNAi machinery to silence a gene of interest. RNAi therapy holds promise for mutant huntingtin (muHtt) allele-specific silencing as a treatment for HD. The purpose of this thesis was to develop the tools for pre-clinical testing of RNAi-mediated gene silencing of human muHtt in the YAC128 mouse model of HD. First, AAV serotypes were compared for delivery to striatal neurons, the neurons most affected in HD. From this work AAV serotype 1 was selected as the most effective serotype for construct delivery. Second, synthetic RNAi constructs including short-hairpin RNA (shRNA) and microRNA-based constructs (miR-shRNAs) were compared for silencing of human muHtt expression in vivo. Here, miR-shRNAs were found to have increased gene silencing and improved tolerance in avoiding immune activation compared to shRNAs. Alternatively, the shRNAs induced dramatic immune activation and morbidity in some cases. Ultimately these findings will contribute to a pre-clinical trial in YAC128 mice investigating Htt RNAi-mediated gene silencing in the treatment of HD, which is also discussed in this thesis. This future work provides proof-of-principle for muHtt allele-specific silencing as a treatment of HD.
|
37 |
Hsp90 and its co-chaperones regulate the activity of human Argonaute2 in RNA-mediated silencing pathwaysPare, Justin Mathew Unknown Date
No description available.
|
38 |
Silencing mutant Huntingtin by RNA interference for the treatment of Huntington DiseaseWagner, Laura A. 11 1900 (has links)
Huntington Disease (HD) is a dominantly inherited neurological disease attributed to a CAG expansion within the HD gene. The HD mutation gives rise to a polyglutamine expansion in exon 1 of the protein huntingtin (Htt). Since the discovery of the HD mutation in 1993, various HD gene mouse models have been developed to contain either fragments or full-length copies of the mutant HD gene. The existence of these HD mouse models enables focused therapeutic testing to develop potential treatments for HD. RNA interference (RNAi) therapy is a targeted gene silencing approach whereby synthetic RNA constructs are shuttled into the cell by viral vectors and used by the cell’s endogenous RNAi machinery to silence a gene of interest. RNAi therapy holds promise for mutant huntingtin (muHtt) allele-specific silencing as a treatment for HD. The purpose of this thesis was to develop the tools for pre-clinical testing of RNAi-mediated gene silencing of human muHtt in the YAC128 mouse model of HD. First, AAV serotypes were compared for delivery to striatal neurons, the neurons most affected in HD. From this work AAV serotype 1 was selected as the most effective serotype for construct delivery. Second, synthetic RNAi constructs including short-hairpin RNA (shRNA) and microRNA-based constructs (miR-shRNAs) were compared for silencing of human muHtt expression in vivo. Here, miR-shRNAs were found to have increased gene silencing and improved tolerance in avoiding immune activation compared to shRNAs. Alternatively, the shRNAs induced dramatic immune activation and morbidity in some cases. Ultimately these findings will contribute to a pre-clinical trial in YAC128 mice investigating Htt RNAi-mediated gene silencing in the treatment of HD, which is also discussed in this thesis. This future work provides proof-of-principle for muHtt allele-specific silencing as a treatment of HD.
|
39 |
RNA interference during HIV-1 infection the role of TRBP and viral suppressors /Melendez-Peña, Carlos. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Microbiology & Immunology. Title from title page of PDF (viewed 2008/05/14). Includes bibliographical references.
|
40 |
Using RNA interference to study the function of the tethering protein p115 in ER-Golgi trafficGrabski, Robert. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed Feb. 12, 2009). Includes bibliographical references.
|
Page generated in 0.0933 seconds