671 |
Conception et calibration de capteurs de mouvement à film diélectrique pour robots souples multi-degrés de libertéThérien, Francis January 2015 (has links)
Les robots souples pourraient permettre une interaction homme-robot intrinsèquement
sécuritaire car ils sont fabriqués de matériaux déformables. Les capteurs de mouvement adaptés aux robots souples doivent être compatibles avec les mécanismes déformables comportant plusieurs degrés de liberté (DDL) retrouvés sur les robots souples. Le projet de recherche propose des outils de conception pour ce nouveau genre de systèmes de capteurs de mouvement. Pour démontrer ces outils, un système de capteurs est conçu pour un robot souple existant servant pour des interventions chirurgicales guidées par imagerie. De plus, un algorithme de calibration utilisant des techniques d’apprentissage automatique est proposé pour les capteurs à plusieurs DDL. Un prototype du système de capteurs conçu est fabriqué et installé sur le robot souple existant. Lors d’essais expérimentaux, le prototype du système de capteurs atteint une précision moyenne de 0.3 mm et minimale de 1.2 mm.
|
672 |
Conception d’un mécanisme intégré d’attention sélective dans une architecture comportementale pour robots autonomesFerland, François January 2014 (has links)
Le vieillissement de la population à travers le monde nous amène à considérer sérieusement l'intégration dans notre quotidien de robots de service afin d'alléger les besoins pour la prestation de soins.
Or, il n'existe pas présentement de robots de service suffisamment avancés pour être utiles en tant que véritables assistants à des personnes en perte d'autonomie.
Un des problèmes freinant le développement de tels robots en est un d'intégration logicielle.
En effet, il est difficile d'intégrer les multiples capacités de perception et d'action nécessaires à interagir de manière naturelle et adéquate avec une personne en milieu réel, les limites des ressources de calculs disponibles sur une plateforme robotique étant rapidement atteintes.
Même si le cerveau humain a des capacités supérieures à un ordinateur, lui aussi a des limites sur ses capacités de traitement de l'information.
Pour faire face à ces limites, l'humain gère ses capacités cognitives avec l'aide de l'attention sélective.
L'attention sélective lui permet par exemple d'ignorer certains stimuli pour concentrer ses ressources sur ceux utiles à sa tâche.
Puisque les robots pourraient grandement bénéficier d'un tel mécanisme, l'objectif de la thèse est de développer une architecture de contrôle intégrant un mécanisme d'attention sélective afin de diminuer la charge de calcul demandée par les différents modules de traitement du robot.
L'architecture de contrôle utilisé est basée sur l'approche comportementale, et porte le nom HBBA, pour Hybrid Behavior-Based Architecture.
Pour répondre à cet objectif, le robot humanoïde nommé IRL-1 a été conçu pour permettre l'intégration de multiples capacités de perception et d'action sur une seule et même plateforme, afin de s'en servir comme plateforme expérimentale pouvant bénéficier de mécanismes d'attention sélective.
Les capacités implémentées permettent d'interagir avec IRL-1 selon différentes modalités.
IRL-1 peut être guidé physiquement en percevant les forces externes par le bias d'actionneurs élastiques utilisés dans la direction de sa plateforme omnidirectionnelle.
La vision, le mouvement et l'audition ont été intégrés dans une interface de téléprésence augmentée.
De plus, l'influence des délais de réaction à des sons dans l'environnement a pu être examinée.
Cette implémentation a permis de valider l'usage de HBBA comme base de travail pour la prise de décision du robot, ainsi que d'explorer les limites en termes de capacités de traitement des modules sur le robot.
Ensuite, un mécanisme d'attention sélective a été développé au sein de HBBA.
Le mécanisme en question intègre l'activation de modules de traitement avec le filtrage perceptuel, soit la capacité de moduler la quantité de stimuli utilisés par les modules de traitement afin d'adapter le traitement aux ressources de calculs disponibles.
Les résultats obtenus démontrent les bénéfices qu'apportent un tel mécanisme afin de permettre au robot d'optimiser l'usage de ses ressources de calculs afin de satisfaire ses buts.
De ces travaux résulte une base sur laquelle il est maintenant possible de poursuivre l'intégration de capacités encore plus avancées et ainsi progresser efficacement vers la conception de robots domestiques pouvant nous assister dans notre quotidien.
|
673 |
Hybrid Control of Multi-robot Systems under Complex Temporal TasksGuo, Meng January 2015 (has links)
Autonomous robots like household service robots, self-driving cars and dronesare emerging as important parts of our daily lives in the near future. They need tocomprehend and fulfill complex tasks specified by the users with minimal humanintervention. Also they should be able to handle un-modeled changes and contingentevents in the workspace. More importantly, they shall communicate and collaboratewith each other in an efficient and correct manner. In this thesis, we address theseissues by focusing on the distributed and hybrid control of multi-robot systemsunder complex individual tasks. We start from the nominal case where a single dynamical robot is deployed in astatic and fully-known workspace. Its local tasks are specified as Linear TemporalLogic (LTL) formulas containing the desired motion. We provide an automatedframework as the nominal solution to construct the hybrid controller that drives therobot such that its resulting trajectory satisfies the given task. Then we expand theproblem by considering a team of networked dynamical robots, where each robot hasa locally-specified individual task also as LTL formulas. In particular, we analyzefour different aspects as described below. When the workspace is only partially known to each robot, the nominal solutionmight be inadequate. Thus we first propose an algorithm for initial plan synthesis tohandle partially infeasible tasks that contain hard and soft constraints. We designan on-line scheme for each robot to verify and improve its local plan during runtime, utilizing its sensory measurements and communications with other robots. Itis ensured that the hard constraints for safety are always fulfilled while the softconstraints for performance are improved gradually. Secondly, we introduce a new approach to construct a full model of both robotmotion and actions. Based on this model, we can specify much broader robotic tasksand it is used to model inter-robot collaborative actions, which are essential for manymulti-robot applications to improve system capability, efficiency and robustness.Accordingly, we devise a distributed strategy where the robots coordinate theirmotion and action plans to fulfill the desired collaboration by their local tasks. Thirdly, continuous relative-motion constraints among the robots, such as collision avoidance and connectivity maintenance, are closely related to the stability,safety and integrity of multi-robot systems. We propose two different hybrid controlapproaches to guarantee the satisfaction of all local tasks and the relative-motionconstraints at all time: the first one is based on potential fields and nonlinear controltechnique; the second uses Embedded Graph Grammars (EGGs) as the main tool. At last, we take into account two common cooperative robotic tasks, namelyservice and formation tasks. These tasks are requested and exchanged among therobots during run time. The proposed hybrid control scheme ensures that the real-time plan execution incorporates not only local tasks of each robot but also thecontingent service and formation tasks it receives. Some of the theoretical results of the thesis have been implemented and demonstrated on various robotic platforms. / Denna avhandling fokuserar på distribuerad och hybridstyrning av multi-robot-system för komplexa, lokala och tidsberoende uppgifter. Dessa uppgifter specificerasav logiska formler rörande robotens rörelser och andra ageranden. Avhandlingenbehandlar ett tvärvetenskapligt område som integrerar reglering av nätverkaderobotsystem och planering baserad på formella metoder. Ett ramverk för hybridstyrning av flera dynamiska robotar med lokalt specificerade uppgifter presenteras.Fyra huvudscenarier betraktas: (1) robot-planering med motstridiga arbetsuppgifterinom ett delvis okänt arbetsområde; (2) beroende uppgifter för en grupp heterogenaoch samverkande robotar; (3) relativa rörelsebegränsningar hos varje robot; samt(4) robotar med uppgifter som begärs och bekräftas under körning. Numeriskasimuleringar och experiment visas för att validera de teoretiska resultaten. / <p>QC 20151204</p> / EU STREP RECONFIG: FP7-ICT-2011-9-600825 / Swedish Research Council (VR)
|
674 |
Immune systems inspired multi-robot cooperative shepherdingRazali, Sazalinsyah January 2014 (has links)
Certain tasks require multiple robots to cooperate in order to solve them. The main problem with multi-robot systems is that they are inherently complex and usually situated in a dynamic environment. Now, biological immune systems possess a natural distributed control and exhibit real-time adaptivity, properties that are required to solve problems in multi-robot systems. In this thesis, biological immune systems and their response to external elements to maintain an organism's health state are researched. The objective of this research is to propose immune-inspired approaches to cooperation, to establish an adaptive cooperation algorithm, and to determine the refinements that can be applied in relation to cooperation. Two immune-inspired models that are based on the immune network theory are proposed, namely the Immune Network T-cell-regulated---with Memory (INT-M) and the Immune Network T-cell-regulated---Cross-Reactive (INT-X) models. The INT-M model is further studied where the results have suggested that the model is feasible and suitable to be used, especially in the multi-robot cooperative shepherding domain. The Collecting task in the RoboShepherd scenario and the application of the INT-M algorithm for multi-robot cooperation are discussed. This scenario provides a highly dynamic and complex situation that has wide applicability in real-world problems. The underlying 'mechanism of cooperation' in the immune inspired model (INT-M) is verified to be adaptive in this chosen scenario. Several multi-robot cooperative shepherding factors are studied and refinements proposed, notably methods used for Shepherds' Approach, Shepherds' Formation and Steering Points' Distance. This study also recognises the importance of flock identification in relation to cooperative shepherding, and the Connected Components Labelling method to overcome the related problem is presented. Further work is suggested on the proposed INT-X model that was not implemented in this study, since it builds on top of the INT-M algorithm and its refinements. This study can also be extended to include other shepherding behaviours, further investigation of other useful features of biological immune systems, and the application of the proposed models to other cooperative tasks.
|
675 |
SearchBot : Konstruktion och programmering av appstyrd Arduinorobot med värme- och ultraljudssensorFredlund, Andreas, Persson, Tobias, Rask, Elliot January 2016 (has links)
An Arduino based car resembling robot equipped with heat- and ultrasonic sensors has been developed as a prototype for a rescue robot. The robot is controlled using an Android app developed in MIT App Inventor 2. In the app the sensors' information is divided in two modes; driving mode and not driving mode. The ultrasonic sensor's information is available when in driving mode, displaying the distance in centimeters straight ahead. The heat sensor's information is displayed in not driving mode, disabling motor skills, with a 8x8 pixel, blue and red color scaled picture fully updated within 2.38 seconds. An important part of the development is the Auto mode where the robot goes off on its own and signals the app user when a heat signature matching a human is detected within 35 centimeter. If the object close by is not within this temperature range, the robot turns away in another direction. Despite it's rough appearance and slow update speed, the robot fulfills the purpose of the project being able to locate a human heat signature by itself or a app user.
|
676 |
Safe open-loop strategies for handling intermittent communications in multi-robot systemsMayya, Siddharth 27 May 2016 (has links)
The objective of this thesis is to develop a strategy that allows robots to safely execute open-loop motion patterns for pre-computed time durations when facing interruptions in
communication. By computing the time horizon in which collisions with other robots are impossible, this method allows the robots to move safely despite having no updated
information about the environment. As the complexity of multi-robot systems increase, communication failures in the form of packet losses, saturated network channels and hardware failures are inevitable. This thesis is motivated by the need to increase the robustness of operation in the face of such failures. The advantage of this strategy is that it prevents the jerky and unpredictable motion behaviour which often plague robotic systems experiencing communication issues. To compute the safe time horizon, the first step involves constructing reachable sets around the robots to determine the set of all positions that can be reached by the robot in a given amount of time. In order to avoid complications arising from the non-convexity of these reachable sets, analytical expressions for minimum area ellipses enclosing the reachable sets are obtained. By using a fast gradient descent based technique, intersections are computed between a robot’s trajectory and the reachable sets of other robots. This information is then used to compute the safe time horizon for each robot in real time. To this end, provable safety guarantees are formulated to ensure
collision avoidance. This strategy has been verified in simulation as well as on a team of two-wheeled differential drive robots on a multi-robot testbed.
|
677 |
Modélisation de la sécurité des tâches coopératives humain-robotTarbouriech, Sonny January 2016 (has links)
L’interaction physique humain-robot est un domaine d’étude qui s’est vu porter beaucoup d’intérêt ces dernières années. Une optique de coopération entre les deux entités entrevoit le potentiel d’associer les forces de l’humain (comme son intelligence et son adaptabilité) à celle du robot (comme sa puissance et sa précision).
Toutefois, la mise en service des applications développées reste une opération délicate tant les problèmes liés à la sécurité demeurent importants. Les robots constituent généralement de lourdes machines capables de déplacements très rapides qui peuvent blesser gravement un individu situé à proximité.
Ce projet de recherche aborde le problème de sécurité en amont avec le développement
d’une stratégie dite "pré-collision". Celle-ci se caractérise par la conception d’un système
de planification de mouvements visant à optimiser la sécurité de l’individu lors de tâches
d’interaction humain-robot dans un contexte industriel. Pour ce faire, un algorithme basé
sur l’échantillonnage a été employé et adapté aux contraintes de l’application visée. Dans un premier temps, l’intégration d’une méthode exacte de détection de collision certifie que le chemin trouvé ne présente, a priori, aucun contact indésirable. Ensuite, l’évaluation de paramètres pertinents introduit notre notion de sécurité et définit un ensemble d’objectifs à optimiser. Ces critères prennent en compte la proximité par rapport aux obstacles, l’état de conscience des êtres humains inclus dans l’espace de travail ainsi que le potentiel de réaction du robot en cas d'évènement imprévu. Un système inédit de combinaison d’objectifs guide la recherche et mène à l’obtention du chemin jugé comme étant le plus sûr, pour une connaissance donnée de l’environnement. Le processus de contrôle se base sur une acquisition minimale de données environnementales (dispositif de surveillance visuelle) dans le but de nécessiter une installation matérielle qui se veut la plus simple possible.
Le fonctionnement du système a été validé sur le robot industriel Baxter.
|
678 |
Interaction humain-robot par la voix avec traitement des émotions du locuteurBrodeur, David January 2016 (has links)
Un robot social doit être capable d'interagir avec des humains. Pour cela, il est essentiel de savoir communiquer de façon naturelle. L'audition artificielle appliquée en robotique est une approche intéressante puisque la voix est le principal mécanisme de communication des humains entre eux. Au-delà des mots prononcés, il est aussi important de savoir y décoder le contenu paralinguistique qui donne beaucoup de renseignements sur le locuteur. Entre autres, les émotions véhiculées dans la voix du locuteur peuvent aider un robot à comprendre une situation, à savoir si une personne est satisfaite ou non de son travail, si une personne a peur, etc.
Pour qu'une interaction par la voix avec un robot soit fonctionnelle et intéressante pour le locuteur, plusieurs éléments matériels et logiciels sont nécessaires. L'interaction doit aussi tenir compte de certaines règles de conduite qui facilitent les échanges d'information et la compréhension lors d'un dialogue.
Ce mémoire présente donc un système d'interaction humain-robot par la voix qui intègre ces éléments dans une même plateforme. Il utilise 8SoundsUSB et le système ManyEars pour faire l'acquisition et le prétraitement du signal audio. Un détecteur d'activité vocale vient ensuite distinguer le bruit stationnaire ambiant des sources sonores représentant la voix. Une fois le signal de la voix récupéré, il est analysé pour en décoder les mots prononcés et l'émotion. La reconnaissance de la parole est effectuée à partir de l'outil Google Speech API. La reconnaissance des émotions par la voix est basée sur l'algorithme de [Attabi et Dumouchel, 2013] qui utilise les Anchor Models, et caractérise les émotions perçues en trois catégories : neutre, négatif ou positif. Une nouvelle implémentation de cet algorithme a été validée en simulation, puis dans des essais en temps-réel. Le logiciel Palaver [McClain, 2013] permet ensuite d'interpréter les mots et les émotions en les associant à une réponse que le robot peut prononcer à l'aide d'un module de synthèse vocale. Enfin, le gestionnaire de dialogues Disco [Rich et Sidner, 2012] est utilisé afin de réaliser des interactions plus soutenues sur un même sujet.
L'objectif final du projet est de vérifier si l'ajout de la capacité à percevoir les émotions dans la voix améliore l'interaction humain-robot. Pour cela, une interface graphique utilisant des concepts de la bande-dessinée a été développée afin d'illustrer de manière intégrée le contenu linguistique et le contenu paralinguistique détecté. Les résultats d'une étude réalisée auprès de 30 participants suggèrent que l'interaction humain-robot est plus appréciée lorsque le système reconnaît les émotions que lorsqu'il ne les reconnaît pas. Le projet a aussi permis d'identifier des éléments qui permettraient une meilleure intégration des différents éléments du système. Entre autres, l'amélioration du modèle des émotions doit passer par une base de données de voix locales plus grande et annotée par un plus grand nombre de personnes.
|
679 |
AUTONOMOUS SOCCER-PLAYING ROBOTS: A SENIOR DESIGN PROJECTKelsey, Jed M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper describes the experiences and final design of one team in a senior design competition to build a soccer-playing robot. Each robot was required to operate autonomously under the remote control of a dedicated host computer via a wireless link. Each team designed and constructed a robot and wrote its control software. Certain components were made available to all teams. These components included wireless transmitters and receivers, microcontrollers, overhead cameras, image processing boards, and desktop computers. This paper describes the team’s hardware and software designs, problems they encountered, and lessons learned.
|
680 |
Manipulateurs parallèles, singularités et analyse statiqueHubert, Julien 28 September 2010 (has links) (PDF)
Les singularités sont des poses particulières où le robot ne peut être contrôlé et ou les efforts subis par les articulations du mécanisme peuvent tendre vers l'infini ce qui entraine alors une détérioration du mécanisme. Bien que ces dernières années de larges avancées dans la classification et la détection des singularités aient eu lieu la question de la proximité d'une pose à une pose singulière reste ouverte. Dans cette thèse nous tentons d'y répondre avec une approche basée sur la statique. En effet si pour une pose donnée les efforts subis par les articulation restent inférieur à un certain seuil, on pourra affirmer que le robot ne subira pas de détérioration et nous le considérons comme assez éloigné d'une pose singulière. Dans un premier temps, nous proposons un algorithme qui calcule, pour un robot plan dont l'orientation est fixée et dont la plate-forme supporte une charge connue, la frontière de la région pour laquelle on assure l'intégrité physique du manipulateur. Cet algorithme étant difficile à étendre pour des robots à plus de 3 degrés de libertés, nous en proposons un second basé sur l'analyse par intervalles.
|
Page generated in 0.0568 seconds