31 |
[en] EXACT ALGORITHMS FOR ARC AND NODE ROUTING PROBLEMS / [pt] ALGORITMOS EXATOS PARA PROBLEMAS DE ROTEAMENTO EM ARCOS E EM VÉRTICESRAFAEL MARTINELLI PINTO 19 January 2017 (has links)
[pt] Os problemas de roteamento estão entre os problemas combinatórios mais difíceis de encontrar limites melhores do que os existentes ou de provar novas soluções ótimas. Nesta tese, são abordados o Capacitated
Arc Routing Problem (CARP) e o Generalized Vehicle Routing Problem (GVRP). Em ambos os problemas, existe um conjunto de clientes os quais estão espalhados por um grafo dado, onde cada cliente possui uma demanda que deve ser atendida por exatamente um veículo de um conjunto de veículos idênticos. Os custos de travessia e o vértice de depósito são dados. O objetivo é encontrar rotas que coletam todas as demandas com custo mínimo, sem exceder a capacidade de nenhum veículo. No CARP, os clientes são um subconjunto de arestas, chamadas de arestas requireds, e para o GVRP, cada cliente é um subconjunto de vértices, chamado de grupo, onde cada grupo deve ser atendido visitando-se exatamente um vértice deste grupo. Além disto, vale notar que quando cada grupo possui apenas um vértice, o problema passa a ser o Capacitated Vehicle Routing Problem (CVRP). Primeiramente, são investigados métodos para melhorar os limites inferiores de instâncias de grande porte. É proposta a exploração da velocidade de uma heurística dual ascent para gerar cortes de capacidade. Em seguida, é apresentado um algoritmo de geração de colunas com um pricing eficiente para um tipo especial de rota não-elementar. O pricing proposto combina a técnica Decremental State-Space Relaxation (DSSR) com limites de complemento. Estas técnicas permitem o fortalecimento da regra de dominância entre as rotas, reduzindo drasticamente o número total de rótulos utilizados pela programação dinâmica. Finalmente, um algoritmo de branch-cut-and-price é criado o qual usa a geração de colunas e a separação de cortes previamente apresentadas. Além disto, este branch-cut-and-price é implementado usando strong branching e fixação por custo reduzido. Ao fim de cada parte, são apresentados resultados computacionais os quais avaliam a qualidade dos algoritmos propostos, os quais obtém novos limites inferiores para um grande número de instâncias do CARP e do GVRP. / [en] Routing problems stand among the hardest combinatorial problems to find high quality bounds or to prove new optimal solutions. In this thesis, we tackle the Capacitated Arc Routing Problem (CARP) and the
Generalized Vehicle Routing Problem (GVRP). For both problems, there are a set of customers spread over a given graph, where each customer has a demand which must be serviced by exactly one vehicle from a set of identical vehicles. The traversal costs and a depot vertex are given. The objective is to find routes that collect all the demands, without exceeding the capacity of any vehicle, at minimum cost. For the CARP, the customers are a subset of edges, called the required edges, and for the GVRP, each customer is a subset of vertices, called clusters, where each cluster must be serviced by visiting exactly one vertex of it. Furthermore, it is noteworthy that when every cluster contains just a single vertex, the problem is the Capacitated Vehicle Routing Problem (CVRP). Firstly, we investigate methods to improve lower bounds for large scale instances. We propose to explore the speed of a new dual ascent heuristic to generate capacity cuts. The quality of the cuts found is next improved with a new exact separation which is used in the linear program resolution that follows the dual heuristic. Following, we present a column generation algorithm with an efficient pricing for a special kind of non-elementary routes. The proposed pricing algorithm combines Decremental State-Space Relaxation(DSSR) technique with completion bounds. These techniques allow the strengthening of the domination rule between routes, drastically reducing the total number of labels used during the dynamic programming. Finally, we devise a branch-cut-and-price algorithm which uses the previously presented column generation and cut separation. Moreover, this branch-cutand- price is implemented using strong branching and reduced cost fixing. At the end of each part, we present computational experiments which evaluate the quality of the proposed algorithms and show new best lower bounds for a large number of CARP and GVRP instances.
|
32 |
Some PC-based Heuristics For Employee Pick-up Vehicle Routing Problem And Influence Of Spatial Demand DistributionMathirajan, M 03 1900 (has links) (PDF)
No description available.
|
33 |
Problèmes de tournées de véhicules et application industrielle pour la réduction de l'empreinte écologique / Vehicule routing problems and industrial application to reduce the ecological footprintGuibadj, Rym Nesrine 16 April 2013 (has links)
Dans cette thèse, nous nous sommes intéressés à la résolution approchée de problèmes de tournées de véhicules. Nous avons exploité des travaux menés sur les graphes d'intervalles et des propriétés de dominance relatives aux tournées saturées pour traiter les problèmes de tournées sélectives plus efficacement. Des approches basées sur un algorithme d'optimisation par essaim particulaire et un algorithme mémétique ont été proposées. Les métaheuristiques développées font appel à un ensemble de techniques particulièrement efficaces telles que le découpage optimal, les opérateurs de croisement génétiques ainsi que des méthodes de recherches locales. Nous nous sommes intéressés également aux problèmes de tournées classiques avec fenêtres de temps. Différents prétraitements ont été introduits pour obtenir des bornes inférieures sur le nombre de véhicules. Ces prétraitements s'inspirent de méthodes issues de modèles de graphes, de problème d'ordonnancement et de problèmes de bin packing avec conflits. Nous avons montré également l'utilité des méthodes développées dans un contexte industriel à travers la réalisation d'un portail de services mobilité. / In this thesis, we focused on the development of heuristic approaches for solvingvehicle routing problems. We exploited researches conducted on interval graphsand dominance properties of saturated tours to deal more efficiently with selectivevehicle routing problems. An adaptation of a particle swarm optimization algorithmand a memetic algorithm is proposed. The metaheuristics that we developed arebased on effective techniques such as optimal split, genetic crossover operatorsand local searches. We are also interested in classical vehicle problems with timewindows. Various pre-processing methods are introduced to obtain lower boundson the number of vehicles. These methods are based on many approaches usinggraph models, scheduling problems and bin packing problems with conflicts. Wealso showed the effectiveness of the developed methods with an industrial applicationby implementing a portal of mobility services.
|
34 |
Land Leveling Using Optimal Earthmoving Vehicle RoutingMcInvale, Howard D. 30 April 2002 (has links)
This thesis presents new solution approaches for land leveling, using optimal earthmoving vehicle routing. It addresses the Shortest Route Cut and Fill Problem (SRCFP) developed by Henderson, Vaughan, Wakefield and Jacobson [2000]. The SRCFP is a discrete optimization search problem, proven to be NP-hard. The SRCFP describes the process of reshaping terrain through a series of cuts and fills. This process is commonly done when leveling land for building homes, parking lots, etc. The model used to represent this natural system is a variation of the Traveling Salesman Problem. The model is designed to limit the time needed to operate expensive, earthmoving vehicles. The model finds a vehicle route that minimizes the total time required to travel between cut and fill locations while leveling the site. An optimal route is a route requiring the least amount of travel time for an individual earthmoving vehicle.
This research addresses the SRCFP by evaluating minimum function values across an unknown response surface. The result is a cost estimating strategy that provides construction planners a strategy for contouring terrain as cheaply as possible. Other applications of this research include rapid runway repair, and robotic vehicle routing. / Master of Science
|
35 |
[en] EXACT ALGORITHMS FOR THE CAPACITATED VEHICLE ROUTING PROBLEM / [pt] ALGORITMOS EXATOS PARA O PROBLEMA DE ROTEAMENTO DE VEÍCULOS CAPACITADODIEGO GALINDO PECIN 01 April 2015 (has links)
[pt] Os Problemas de Roteamento de Veículos estão entre os problemas combinatoriais mais difíceis de se resolver à otimalidade. Eles foram propostos no final da década de 1950, e desde então eles têm sido amplamente estudados. O interesse deve-se a sua importância prática, bem como da dificuldade de se fornecer algoritmos eficientes para resolvê-los. Esta tese trata principalmente da resolução exata do Problema de Roteamento de Veículos com Capacidades (PRVC). Neste problema, um conjunto de clientes, cada um associado a uma demanda, deve ser atendido por uma frota de veículos. Todos eles têm o mesma capacidade e, inicialmente, estão localizados no mesmo depósito. Uma solução é um conjunto de rotas que começam e terminam no depósito e visitam cada cliente uma única vez. A restrição em uma rota é que a soma das demandas de seus clientes não exceda a capacidade do veículo. O objetivo é encontrar uma solução com um custo mínimo. Os melhores algoritmos exatos para o PRVC desenvolvidos nos últimos dez anos são baseados na combinação de geração de cortes e colunas. Alguns autores utilizaram apenas cortes sobre as variáveis da formulação original, com a finalidade de manter o subproblema de geração de colunas relativamente fácil. Outros puderam reduzir os limites duais utilizando também um número restrito de cortes expressos nas variáveis do problema mestre, parando de incluir tais cortes quando o subproblema tornavase proibitivamente difícil. Uma família eficaz de tais cortes são os Subset Row Cuts. Esta tese apresenta uma técnica para reduzir consideravelmente o impacto que tais cortes causam no subproblema de geração de colunas, permitindo assim que muito mais cortes sejam adicionados. O novo algoritmo Branch-Cut-and-Price proposto também incorpora e combina pela primeira vez vários elementos presentes em trabalhos anteriores, como enumeração de rotas, fixação de variáveis e strong branching. Todas as instâncias usadas em algoritmos exatos, com até 199 clientes, foram resolvidas à otimalidade. Além disso, algumas maiores, com até 360 clientes, apenas consideradas antes em métodos heurísticos, também foram resolvidas. / [en] Vehicle Routing Problems are among the most difficult combinatorial problems to solve to optimality. They were proposed in the late 1950 s and since then have been widely studied. This interest arises from their practical importance, as well as the difficulty of providing efficient algorithms to solve them. This thesis is mainly concerned with the exact resolution of the Capacitated Vehicle Routing Problem (CVRP). In this problem, a set of customers, each one associated to a demand, must be serviced by a
fleet of vehicles. All vehicles have the same (limited) capacity and initially are located in the same central depot. A solution is a set of routes, starting and ending at the depot, that visit every customer exactly once. The only constraint on a route is that the sum of the demands of its customers does not exceed the vehicle capacity. The objective is to find a solution with minimum total cost. The best performing exact algorithms for the CVRP developed in the last 10 years are based in the combination of cut and column generation. Some authors only used cuts expressed over the variables of the original formulation, in order to keep the pricing subproblem relatively easy. Other authors could reduce the duality gaps by also using a restricted number of cuts over the Master LP variables, stopping when the pricing becomes prohibitively hard. A particularly effective family of such cuts are the Subset Row Cuts. This thesis introduces a technique for greatly reducing this impact on the pricing of these cuts, thus allowing much more cuts to be added. The newly proposed Branch-Cut-and-Price algorithm also incorporates and combines for the first time (often in an improved way) several elements found in previous works, like route enumeration, variable fixing and strong branching. All the instances used for benchmarking exact algorithms, with up to 199 customers, were solved to optimality. Moreover, some larger instances with up to 360 customers, only considered before by heuristic methods, were solved too.
|
36 |
Méthodes de modélisation et d'optimisation par recherche à voisinages variables pour le problème de collecte et de livraison avec transbordement / Modeling method and optimization by the variable neighborhood search for the pickup and delivery problem with transshipmentTchapnga Takoudjou, Rodrigue 12 June 2014 (has links)
La présente thèse se déroule dans le cadre du projet ANR PRODIGE et est axée sur la recherche de stratégies permettant l’optimisation du transport en général et du transport routier de marchandises en particulier. Le problème de transport support de cette étude est le problème de collecte et livraison avec transbordement. Ce problème généralise plusieurs problèmes de transports classiques. Le transbordement y est utilisé comme levier de flexibilité et d’optimisation. Pour analyser et résoudre ce problème, les analyses sont effectuées suivant trois axes : le premier axe concerne l’élaboration d’un modèle analytique plus précisément d’un modèle mathématique en variables mixtes. Ce modèle permet de fournir dessolutions optimales au décisionnaire du transport mais présente l’inconvénient de nécessiter un temps de résolution qui croit exponentiellement avec la taille du problème. Cette limitation est levée par le deuxième axe d’étude qui permet de résoudre le problème de transport étudié par une méthode d’optimisation approchée tout en garantissant des solutions satisfaisantes.La méthode utilisée est une métaheuristique inspirée de la recherche à voisinages variables (VNS). Dans le troisième axe, l’ensemble des résultats obtenus dans la thèse sont testés en situation de transports réels via le projet PRODIGE. / The thesis is conducted under the ANR project PRODIGE and it is focused on seeking strategies allowing the optimization of transport in general and road freight transport in particular. The transportation problem support for this study is the pickup and delivery problem with transshipment.This problem generalizes several classical transportation problems.Transshipment is used as optimization and flexibility leverage. To study and solve this problem, analyzes are performed along three axes :the first objective concerns the development of an analytical model, more accurately a mathematical model with mixed variables. This model allows providing optimal solution to the decision maker, but has the disadvantage of requiring a time resolution that grows exponentially with the size of the problem. This limitation is overcome by the second line of the study that solves the transportation problem studied by an approximate optimization method while ensuring satisfactory solutions. The method used is a mataheuristic broadly followed the variables neighborhoods research principles. In the third objective, the overall results obtained in the thesis are tested in real transport situation via the PRODIGE project.
|
37 |
Une matheuristique unifiée pour résoudre des problèmes de tournées de véhicules riches / Unified matheuristic for solving rich vehicle routing problemsLahyani, Rahma 13 June 2014 (has links)
L’objectif de cette thèse est de développer un cadre méthodologique pour les problèmes de tournées de véhicules riches (RVRPs). Nous présentons d’abord une taxonomie et une définition élaborée des RVRPs basée sur une analyse typologique réalisée en fonction de deux critères discriminatoires. Dans cette thèse, nous nous intéressons à la résolution du problème de tournées de véhicules multi-dépôt multi-compartiment multi-produits avec fenêtres de temps (MDMCMCm-VRPTW). Nous proposons une heuristique de génération de colonnes unifiée qui inclut une matheuristique de type VNS. La matheuristique combine plusieurs heuristiques de routage de type destruction et insertion ainsi que des procédures efficaces de contrôle de réalisabilité des contraintes afin de résoudre le MDMCMCm-VRPTW pour un seul véhicule. Deux voisinages de chargement, basés sur la résolution de programmes mathématiques sont proposées. Des études expérimentales approfondies sont conduites sur un ensemble de 191 instances pour des VRPs moins complexes. Les expérimentations valident la compétitivité de la matheuristique unifiée. Une analyse de sensibilité révèle l’importance de certains choix algorithmiques et des voisinages de chargement pour parvenir à des solutions de très bonne qualité. La matheuristique basée sur la méthode de VNS est intégrée dans l’heuristique de génération de colonnes pour résoudre le MDMCMCm-VRPTW. Nous proposons une méthode exacte de post-traitement capable d’optimiser l’affectation des clients aux tournées de véhicules. Enfin, nous résolvons un RVRP qui survient dans le processus de collecte de l’huile d’olive en Tunisie à l’aide d’un algorithme exact de type branch-and-cut / The purpose of this thesis is to develop a solution framework for Rich Vehicle Routing Problems (RVRPs). We first provide a comprehensive survey of the RVRP literature as well as a taxonomy. Selected papers addressing various variants are classified according to the proposed taxonomy. A cluster analysis based on two discriminating criteria is performed and leads to define RVRPs. In this thesis we are interested in solving a multi-depot multi-compartment multi-commodity vehicle routing problem with time windows (MDMCMCm-VRPTW). We propose a unified column generation heuristic cooperating with a variable neighborhood search (VNS) matheuristic. The VNS combines several removal and insertion routing heuristics as well as computationally efficient constraint checking. Two loading neighborhoods based on the solution of mathematical programs are proposed to intensify the search. On a set of 191 instances of less complex routing problems, the unified matheuristic turns to be competitive. A sensitivity analysis, performed on more complex generated instances reveals the importance of some algorithmic features and of loading neighborhoods for reaching high quality solutions. The VNS based matheuristic is embedded in a column generation heuristic to solve the MDMCMCm-VRPTW. We propose an exact post-processing method to optimize the assignment ofcustomers to vehicle routes. Last, we introduce, model and solve to optimality a RVRP arising in the olive oil collection process in Tunisia. We propose an exact branch-and-cut algorithm to solve the problem. We evaluate the performance of the algorithm on real data sets under different transportation scenarios
|
38 |
Investigating the Use of Digital Twins to Optimize Waste Collection Routes : A holistic approach towards unlocking the potential of IoT and AI in waste management / Undersökning av användningen av digitala tvillingar för optimering av sophämtningsrutter : Ett holistiskt tillvägagångssätt för att ta del av potentialen för IoT och AI i sophanteringMedehal, Aarati January 2023 (has links)
Solid waste management is a global issue that affects everyone. The management of waste collection routes is a critical challenge in urban environments, primarily due to inefficient routing. This thesis investigates the use of real-time virtual replicas, namely Digital Twins to optimize waste collection routes. By leveraging the capabilities of digital twins, this study intends to improve the effectiveness and efficiency of waste collection operations. The ‘gap’ that the study aims to uncover is hence at the intersection of smart cities, Digital Twins, and waste collection routing. The research methodology comprises of three key components. First, an exploration of five widely used metaheuristic algorithms provides a qualitative understanding of their applicability in vehicle routing, and consecutively waste collection route optimization. Building on this foundation, a simple smart routing scenario for waste collection is presented, highlighting the limitations of a purely Internet of Things (IoT)-based approach. Next, the findings from this demonstration motivate the need for a more data-driven and intelligent solution, leading to the introduction of the Digital Twin concept. Subsequently, a twin framework is developed, which encompasses the technical anatomy and methodology required to create and utilize Digital Twins to optimize waste collection, considering factors such as real-time data integration, predictive analytics, and optimization algorithms. The outcome of this research contributes to the growing concept of smart cities and paves the way toward practical implementations in revolutionizing waste management and creating a sustainable future. / Sophantering är ett globalt problem som påverkar alla, och hantering av sophämtningsrutter är en kritisk utmaning i stadsmiljöer. Den här avhandlingen undersöker användningen av virtuella kopior i realtid, nämligen digitala tvillingar, för att optimera sophämtningsrutter. Genom att utnyttja digitala tvillingars förmågor, avser den här studien att förbättra effektiviteten av sophämtning. Forskningsmetoden består av tre nyckeldelar. Först, en undersökning av fem välanvända Metaheuristika algoritmer som ger en kvalitativ förståelse av deras applicerbarhet i fordonsdirigering och således i optimeringen av sophämtningsrutter. Baserat på detta presenteras ett enkelt smart ruttscenario för sophämtning som understryker bristerna av att bara använda Internet of Things (IoT). Sedan motiverar resultaten av demonstrationen nödvändigheten för en mer datadriven och intelligent lösning, vilket leder till introduktionen av konceptet med digitala tvillingar. Därefter utvecklas ett ramverk för digitala tvillingar som omfattar den tekniska anatomin och metod som krävs för att skapa och använda digitala tvillingar för att optimera sophämtningsrutter. Dessa tar i beaktning faktorer såsom realtidsdataintegrering, prediktiv analys och optimeringsalgoritmer. Slutsatserna av studien bidrar till det växande konceptet av smarta städer och banar väg för praktisk implementation i revolutionerande sophantering och för skapandet för en hållbar framtid.
|
39 |
Méthodes exactes et heuristiques pour le problème de tournées de véhicules avec fenêtres de temps et réutilisation de véhiculesAzi, Nabila 08 1900 (has links)
Cette thèse porte sur les problèmes de tournées de véhicules avec
fenêtres de temps où un gain est associé à chaque client et où l'objectif est
de maximiser la somme des gains recueillis moins les coûts de transport.
De plus, un même véhicule peut effectuer plusieurs tournées durant
l'horizon de planification. Ce problème a été relativement peu étudié en dépit de son importance en pratique. Par exemple,
dans le domaine de la livraison de denrées périssables, plusieurs tournées de courte durée doivent être combinées afin de former des journées
complètes de travail. Nous croyons que ce type de
problème aura une importance de plus en plus grande dans le futur avec l'avènement du commerce électronique, comme les épiceries
électroniques, où les clients peuvent commander des produits par internet pour la livraison à domicile.
Dans le premier chapitre de cette thèse, nous présentons d'abord une revue de la
littérature consacrée aux
problèmes de tournées de véhicules avec gains ainsi qu'aux problèmes permettant une
réutilisation des véhicules. Nous présentons les
méthodologies générales adoptées pour les résoudre, soit les méthodes exactes,
les méthodes heuristiques et les méta-heuristiques. Nous discutons enfin des problèmes de tournées
dynamiques où certaines données sur le problème ne sont pas connues à l'avance.
Dans le second chapitre, nous décrivons un algorithme
exact pour résoudre un problème de tournées avec fenêtres de temps et réutilisation de véhicules où l'objectif premier est
de maximiser le nombre de clients desservis. Pour ce faire, le problème est modélisé comme un problème de tournées avec
gains. L'algorithme exact est basé sur une méthode de génération de colonnes couplée avec un algorithme de plus court
chemin élémentaire avec contraintes de ressources.
Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise.
Le troisième chapitre propose donc
une méthode de recherche adaptative à grand voisinage qui exploite les différents niveaux
hiérarchiques du problème (soit les journées complètes de travail des véhicules, les routes qui composent ces journées et les clients qui composent les routes).
Dans le quatrième chapitre, qui traite du cas dynamique,
une stratégie d'acceptation et de refus des nouvelles requêtes de service est proposée, basée sur une anticipation des
requêtes à venir. L'approche repose sur la génération de scénarios pour
différentes réalisations possibles des requêtes futures. Le coût d'opportunité de servir
une nouvelle
requête est basé sur une évaluation des scénarios avec et sans cette nouvelle requête.
Enfin, le dernier chapitre résume les contributions de cette thèse et propose quelques avenues
de recherche future. / This thesis studies vehicle routing problems with time windows, where a gain is associated
with each customer and where the objective is to maximize the total gain collected minus
the routing costs. Furthermore.
the same vehicle might be assigned to different routes during the planning horizon.
This problem has received little attention in the literature in
spite of its importance in practice. For example, in the
home delivery of perishable goods (like food), routes
of short duration must be combined to form complete workdays.
We believe that this type of problem will become increasingly important
in the future with the advent of electronic services, like e-groceries, where
customers can order goods through the Internet and get these goods
delivered at home.
In the first chapter of this thesis, we present a review of vehicle routing problems
with gains, as well as vehicle routing problems with
multiple use of vehicles. We discuss the general classes of
problem-solving approaches for these problems, namely, exact methods, heuristics and metaheuristics.
We also introduce dynamic vehicle routing problems, where new information is revealed
as the routes are executed.
In the second chapter, we describe an exact algorithm for a vehicle routing problem with
time windows and multiple use of vehicles, where the first objective is to maximize the number of
served customers. To this end, the problem is modeled as a vehicle routing problem with gains.
The exact algorithm is based on column generation, coupled with an elementary shortest path algorithm
with resource constraints.
To solve realistic instances in reasonable computation times, a heuristic approach is required.
The third chapter proposes an adaptative large neighborhood search where the various hierarchical
levels of the problem are exploited (i.e., complete vehicle workdays, routes within workdays and
customers within routes).
The fourth chapter deals with the dynamic case. In this chapter, a strategy for
accepting or rejecting new customer requests is proposed. This strategy is based on the
generation of multiple scenarios for different realizations of the requests in the future.
An opportunity cost for serving a new request is then computed, based on an evaluation of the
scenarios with and without the new request.
Finally, the last chapter summarizes the contributions of this thesis and proposes future research
avenues.
|
40 |
Méthodes exactes et heuristiques pour le problème de tournées de véhicules avec fenêtres de temps et réutilisation de véhiculesAzi, Nabila 08 1900 (has links)
Cette thèse porte sur les problèmes de tournées de véhicules avec
fenêtres de temps où un gain est associé à chaque client et où l'objectif est
de maximiser la somme des gains recueillis moins les coûts de transport.
De plus, un même véhicule peut effectuer plusieurs tournées durant
l'horizon de planification. Ce problème a été relativement peu étudié en dépit de son importance en pratique. Par exemple,
dans le domaine de la livraison de denrées périssables, plusieurs tournées de courte durée doivent être combinées afin de former des journées
complètes de travail. Nous croyons que ce type de
problème aura une importance de plus en plus grande dans le futur avec l'avènement du commerce électronique, comme les épiceries
électroniques, où les clients peuvent commander des produits par internet pour la livraison à domicile.
Dans le premier chapitre de cette thèse, nous présentons d'abord une revue de la
littérature consacrée aux
problèmes de tournées de véhicules avec gains ainsi qu'aux problèmes permettant une
réutilisation des véhicules. Nous présentons les
méthodologies générales adoptées pour les résoudre, soit les méthodes exactes,
les méthodes heuristiques et les méta-heuristiques. Nous discutons enfin des problèmes de tournées
dynamiques où certaines données sur le problème ne sont pas connues à l'avance.
Dans le second chapitre, nous décrivons un algorithme
exact pour résoudre un problème de tournées avec fenêtres de temps et réutilisation de véhicules où l'objectif premier est
de maximiser le nombre de clients desservis. Pour ce faire, le problème est modélisé comme un problème de tournées avec
gains. L'algorithme exact est basé sur une méthode de génération de colonnes couplée avec un algorithme de plus court
chemin élémentaire avec contraintes de ressources.
Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise.
Le troisième chapitre propose donc
une méthode de recherche adaptative à grand voisinage qui exploite les différents niveaux
hiérarchiques du problème (soit les journées complètes de travail des véhicules, les routes qui composent ces journées et les clients qui composent les routes).
Dans le quatrième chapitre, qui traite du cas dynamique,
une stratégie d'acceptation et de refus des nouvelles requêtes de service est proposée, basée sur une anticipation des
requêtes à venir. L'approche repose sur la génération de scénarios pour
différentes réalisations possibles des requêtes futures. Le coût d'opportunité de servir
une nouvelle
requête est basé sur une évaluation des scénarios avec et sans cette nouvelle requête.
Enfin, le dernier chapitre résume les contributions de cette thèse et propose quelques avenues
de recherche future. / This thesis studies vehicle routing problems with time windows, where a gain is associated
with each customer and where the objective is to maximize the total gain collected minus
the routing costs. Furthermore.
the same vehicle might be assigned to different routes during the planning horizon.
This problem has received little attention in the literature in
spite of its importance in practice. For example, in the
home delivery of perishable goods (like food), routes
of short duration must be combined to form complete workdays.
We believe that this type of problem will become increasingly important
in the future with the advent of electronic services, like e-groceries, where
customers can order goods through the Internet and get these goods
delivered at home.
In the first chapter of this thesis, we present a review of vehicle routing problems
with gains, as well as vehicle routing problems with
multiple use of vehicles. We discuss the general classes of
problem-solving approaches for these problems, namely, exact methods, heuristics and metaheuristics.
We also introduce dynamic vehicle routing problems, where new information is revealed
as the routes are executed.
In the second chapter, we describe an exact algorithm for a vehicle routing problem with
time windows and multiple use of vehicles, where the first objective is to maximize the number of
served customers. To this end, the problem is modeled as a vehicle routing problem with gains.
The exact algorithm is based on column generation, coupled with an elementary shortest path algorithm
with resource constraints.
To solve realistic instances in reasonable computation times, a heuristic approach is required.
The third chapter proposes an adaptative large neighborhood search where the various hierarchical
levels of the problem are exploited (i.e., complete vehicle workdays, routes within workdays and
customers within routes).
The fourth chapter deals with the dynamic case. In this chapter, a strategy for
accepting or rejecting new customer requests is proposed. This strategy is based on the
generation of multiple scenarios for different realizations of the requests in the future.
An opportunity cost for serving a new request is then computed, based on an evaluation of the
scenarios with and without the new request.
Finally, the last chapter summarizes the contributions of this thesis and proposes future research
avenues.
|
Page generated in 0.1031 seconds