• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 11
  • 11
  • 9
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 100
  • 32
  • 24
  • 22
  • 22
  • 22
  • 21
  • 20
  • 19
  • 16
  • 16
  • 16
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Utveckling av en transponder

Altmann, Peter, Löf, Roger, Nilsson, Johannes January 2009 (has links)
<p>Utveckling av en transponder som med befintliga tekniker erbjuder möjlighet att, över stora avstånd, lokalisera gods utom- såväl som inomhus.</p>
42

Power Control Mechanisms on WARP Boards

Kandukuri, Somasekhar Reddy January 2013 (has links)
In recent years, a number of power control concepts have been studied and implementedeither in simulation or in practice for different communication systems. It is still the case that a great deal of research is being conducted within the area of energyefficient power control mechanisms for future wireless communication networksystems. However, only a limited amount of practical work has been implemented onreal test beds environment. The main goal of this thesis is to propose and develop newprototype Transmit Power Control Mechanisms (TPCM) on WARP (Wireless Open-Access Research Platform) boards for point-to-point communications, which are to bedeveloped and tested in an indoor environment. This work mainly focuses on the automaticpower control nodes, transmission and reception over-the-air. In this thesis, wehave designed and developed TPCM to adjust the power levels on a transmitter nodeby following the feedback (ACK) approach. In this case, the destination (receiver)node always sends the feedback (ACK) to transmitter node during every successfultransmission of message signal and the main focus is on a reduction in the packetloss rate (PLR), an increase in the packet reception rate (PRR) and the capacity ofthe nodes. In this real work, we have developed and measured the results based ontwo functions namely, with and without packet window function power control mechanisms. According to the measurements section, both with and without function powercontrol mechanisms proved to have better performances for different tunable parameters.If both functions are compared, then the with window function power controlmechanism was shown to produce better performances than the without windowpower control mechanism and it also converged faster than the without window function.If consideration was given to controlling a reduction in packet loss rate, thenthe with widnow function offered higher performances than those without the windowfunction. In this regard, it was found that the with window function has acheived amaximum packet reception rate than that for the without window function for differenttunable parameters. In relation to the power consumption scenario, it was determinedthat the without window fuction proved to produce energy saving performances thanthe with window function. There are several interesting aspects of the transmit powercontrol mechanisms highlighted in the results and discussion chapter.
43

Utveckling av en transponder

Altmann, Peter, Löf, Roger, Nilsson, Johannes January 2009 (has links)
Utveckling av en transponder som med befintliga tekniker erbjuder möjlighet att, över stora avstånd, lokalisera gods utom- såväl som inomhus.
44

Indoor and Outdoor Evaluation of Campus RSS Performance

Li, Qian, Zhang, Xintong January 2011 (has links)
The focus of this thesis work is to evaluate the RSS (Received Signal Strength) Performance of the University of Gävle (HiG) based on IEEE 802.11 standards both indoor and outdoor. Authors investigated the issues of deploying access points for wireless local area networks in the library-2nd floor, building 99-4th floor and outdoor university campus. By using the program VisiWave Site Survey, Global Position System (GPS) and RSS sensor to analysis the received signal strength, throughput and radio map. The influence of the building material and distance for the signal strength and the throughput are done by investigating indoor environment. The results of investigation suggest that most parts of library-2nd floor and building 99-4th floor possess at least a good RSS performance. However, minority parts of these places have a poor RSS performance, and the new resolution of Access Points’ (AP) deployment for these poor-RSS-performance parts is provided. For the outdoor campus part, the RSS in the area which near the walls of building is satisfactory (Received Signal Strength Indication (RSSI) between -79.8 dBm and -57 dBm), however in the centre of outdoor campus the RSS is poor. Thus, the evaluation of APs deployment in HiG is achieved.
45

Improving WiFi positioning through the use of successive in-sequence signal strength samples

Hallström, Per, Dellrup, Per January 2006 (has links)
As portable computers and wireless networks are becoming ubiquitous, it is natural to consider the user’s position as yet another aspect to take into account when providing services that are tailored to meet the needs of the consumers. Location aware systems could guide persons through buildings, to a particular bookshelf in a library or assist in a vast variety of other applications that can benefit from knowing the user’s position. In indoor positioning systems, the most commonly used method for determining the location is to collect samples of the strength of the received signal from each base station that is audible at the client’s position and then pass the signal strength data on to a positioning server that has been previously fed with example signal strength data from a set of reference points where the position is known. From this set of reference points, the positioning server can interpolate the client’s current location by comparing the signal strength data it has collected with the signal strength data associated with every reference point. Our work proposes the use of multiple successive received signal strength samples in order to capture periodic signal strength variations that are the result of effects such as multi-path propagation, reflections and other types of radio interference. We believe that, by capturing these variations, it is possible to more easily identify a particular point; this is due to the fact that the signal strength fluctuations should be rather constant at every position, since they are the result of for example reflections on the fixed surfaces of the building’s interior. For the purpose of investigating our assumptions, we conducted measurements at a site at Växjö university, where we collected signal strength samples at known points. With the data collected, we performed two different experiments: one with a neural network and one where the k-nearest-neighbor method was used for position approximation. For each of the methods, we performed the same set of tests with single signal strength samples and with multiple successive signal strength samples, to evaluate their respective performances. We concluded that the k-nearest-neighbor method does not seem to benefit from multiple successive signal strength samples, at least not in our setup, compared to when using single signal strength samples. However, the neural network performed about 17% better when multiple successive signal strength samples were used.
46

Improving WiFi positioning through the use of successive in-sequence signal strength samples

Hallström, Per, Dellrup, Per January 2006 (has links)
<p>As portable computers and wireless networks are becoming ubiquitous, it is natural to consider the user’s position as yet another aspect to take into account when providing services that are tailored to meet the needs of the consumers. Location aware systems could guide persons through buildings, to a particular bookshelf in a library or assist in a vast variety of other applications that can benefit from knowing the user’s position.</p><p>In indoor positioning systems, the most commonly used method for determining the location is to collect samples of the strength of the received signal from each base station that is audible at the client’s position and then pass the signal strength data on to a positioning server that has been previously fed with example signal strength data from a set of reference points where the position is known. From this set of reference points, the positioning server can interpolate the client’s current location by comparing the signal strength data it has collected with the signal strength data associated with every reference point.</p><p>Our work proposes the use of multiple successive received signal strength samples in order to capture periodic signal strength variations that are the result of effects such as multi-path propagation, reflections and other types of radio interference. We believe that, by capturing these variations, it is possible to more easily identify a particular point; this is due to the fact that the signal strength fluctuations should be rather constant at every position, since they are the result of for example reflections on the fixed surfaces of the building’s interior.</p><p>For the purpose of investigating our assumptions, we conducted measurements at a site at Växjö university, where we collected signal strength samples at known points. With the data collected, we performed two different experiments: one with a neural network and one where the k-nearest-neighbor method was used for position approximation. For each of the methods, we performed the same set of tests with single signal strength samples and with multiple successive signal strength samples, to evaluate their respective performances.</p><p>We concluded that the k-nearest-neighbor method does not seem to benefit from multiple successive signal strength samples, at least not in our setup, compared to when using single signal strength samples. However, the neural network performed about 17% better when multiple successive signal strength samples were used.</p>
47

Conception d'un système d'antennes pour la localisation en temps réel avec réseau de capteurs sans fils.

Barbosa Nogueira, Evanaska Maria 13 December 2013 (has links) (PDF)
Les systèmes de localisation en temps réel (Real-Time Locating System - RTLS) sont de plus en plus employés dans l'industrie. Ils permettent l'automatisation de diverses tâches telles que l'identification et le suivi des objets au long de la chaîne d'approvisionnement, la surveillance d'équipements dans les usines et la sécurisation des biens. Ces systèmes sont basés sur des capteurs électroniques sans fil à faible puissance et à faible coût avec des antennes intégrées. Dans notre contexte, deux types de capteurs sont utilisés. Les tags de référence sont généralement fixés sur les murs tandis que les tags mobiles sont fixés sur les objets qui doivent être suivis. Notre système RTLS (Real Time Localisation System) exploite la puissance du signal reçu (Received Signal Strength Indication - RSSI) pour calculer la localisation des tags mobiles. Toutefois, la performance de ce système peut être influencée par plusieurs facteurs. Tout d'abord, par rapport à l'antenne, la non-uniformité du diagramme de rayonnement et le non-alignement de la polarisation des antennes peuvent affecter la puissance du signal reçu. De plus, l'impact de l'environnement résulte sur des multi-trajets qui dégradent la précision de la localisation. Dans la première partie de ce travail, nous proposons une solution pour le tag de référence en utilisant un plan réflecteur en métal pour améliorer son diagramme de rayonnement. Nous avons effectué plusieurs expériences utilisant un logiciel de simulation et nous démontrons que l'utilisation d'un plan réflecteur en métal améliore considérablement la précision de la localisation de notre système. Dans la deuxième partie, nous proposons d'utiliser des techniques de diversité d'antenne pour le tag mobile afin de minimiser les effets des multi-trajets et d'améliorer le diagramme de rayonnement afin de couvrir tout l'espace souhaité pour la localisation. Nos solutions se composent de trois antennes intégrées sur le boîtier en plastique du tag, alliant la diversité de diagramme et de polarisation. Nous proposons une première structure avec trois antennes PIFAs manufacturées et fixées à l'extérieur du boîtier, un deuxième système avec deux antennes IFAs et enfin une antenne patch triangulaire sur un substrat permettant de plier les antennes, de façon à pouvoir rentrer la structure dans le boîtier du tag. Ces systèmes ont été simulés dans différents configurations de scénario afin de valider l'amélioration apportée par nos solutions. Finalement, des expérimentations ont été menées afin de comparer les systèmes proposés dans un environnement réel. Les résultats montrent que l'erreur de localisation a été divisée par un facteur proche de trois par rapport au système d'origine.
48

Evaluation of Different Radio-Based Indoor Positioning Methods

Ahlberg, Sven January 2014 (has links)
Today, positioning with GPS and the advantages this entails are almost infinitive, which means that the technology can be utilized in a variety of applications. Unfortunately, there exists a lot of limitations in conjunction with the signals from the GPS can’t reach inside e.g. buildings or underground. This means that an alternative solution that works indoors needs to be developed. The report presents the four most common radio-based technologies, Bluetooth,Wi-Fi, UWB and RFID, which can be used to determine a position. These all have different advantages in cost, accuracy and latency, which means that there exist a number of different applications. The radio-based methods use the measurement techniques, RSSI, TOA, TDOA, Cell-ID, PD or AOA to gather data. The choice of measurement technique is mainly dependent of which radio-based method being used, since their accuracy depends on the quality of the measurements and the size of the detection area, which means that all measurement techniques have different advantages and disadvantages. The measurement data is processed with one of the positioning methods, LS, NLS, ML, Cell-ID, WC or FP, to estimate a position. The choice of positioning method also depends on the quality of the measurements in combination with the size of the detection area. To evaluate the different radio-based methods together with measurement techniques and positioning methods, accuracy, latency and cost are being compared. This is used as the basis for the choice of positioning method, since a general solution can get summarized by finding the least expensive approach which can estimate an unknown position with sufficiently high accuracy.
49

Cost-Effective Positioning based on WiFi-Probes: A Quantitative Study : Deriving the Position of a Smartphone using the Signal Strength of WiFi-Probes

Ljung, Alexander, Knutsson, Hannes January 2018 (has links)
In the modern society, almost everyone has a smartphone. These devices tend to almost always use WiFi-networking. For the device to identify nearby WiFi access points it has to send out WiFi probing broadcasts. Nearby access points respond to these broadcasts in order to let the device know that they are within reach. This technique is called active scanning. This paper aims to answer if it is possible to use the signal strength of these broadcasts to localize the device transmitting them. We are interested in the possibility of creating this kind of system and the accuracy that it would be able to provide. This is a quantitative study where we produce our results based on experiments, measurements and observations. The experiments are set in a large square shaped area. A sensor was placed at each corner of the area that the smartphone will be tracked within. The smartphone will be sending WiFi probing broadcasts that will be monitored and measured by the sensors. The strength of the broadcast signal will be converted into the relative distance between the devices position and the sensors. These four distances, collected from each of the sensors, will further be converted into a position within the area by using trilateration. To measure the accuracy of the system, the true position of the device will be compared against the calculated position from the system using only the signal strength. Further, a deviation in the distance between the two locations will be calculated. The experiments resulted in a positioning system that was able to estimate positions within an 80 x 80m area. Fourteen location positions were taken which resulted in a mean deviation of 16.6 meters from the true location and a root mean squared error of 19.5 meters. We concluded that more readings within the same position gave a significant increase in accuracy, to the expense of time. Using single measurements would be more practical, but would not produce reliable positions. Keywords: WiFi, Probe Broadcast, Local Positioning System, Trilateration, RSSI.
50

Integrated Coverage Measurement and Analysis System for Outdoor Coverage WLAN

Yılmazer, Şafak Enes January 2011 (has links)
Daily usage of Wireless Local Area Networks (WLAN) in business life for specific purposes has became much more critical than before since it is sometimes crucial to have wireless connectivity and seamless roaming around the working environment. In this thesis, steps required in order to design and implement a large scale outdoor IEEE 802.11g WLAN will be shown. This WLAN project has been deployed in north of Sweden and target coverage was an open area consisting of a deep pit mine, connecting roads, workshops, offices, dumps and storage areas. All telecommunications equipment used in this project is from the manufacturer Cisco using centralized solution. The special purpose of this project is to collect and analyze a series of coverage measurement data and correlate this data to predict the coverage area. Linux bash scripting and Gnuplot has been used to analyze coverage data. Finally, WRAP spectrum management and radio planning software has been used in modeling and designing of the whole network.

Page generated in 0.0489 seconds