1 |
Dissociation, Association and Running TimeMiller, Dana L. 01 May 1980 (has links)
The objective of this research was to investigate relationship between dissociative and associative cognitive strategies for coping with the discomfort of running and running performance.
Subjects were volunteers enrolled in two Dynamic Fitness classes which were taught during Spring Quarter, 1980, at Utah State University. Class A consisted of 36 subjects (24 male, 12 female) and Class B consisted of 28 subjects (13 male, 15 female). All pretest, posttest, and treatment procedures were conducted during the class's respective regularly scheduled meeting times.
Subjects completed a 2.75 mile, timed, pretest run and were systematically assigned to one of three groups based on pretest time: 1) Control, 2) dissociation training group, and 3) association training group. Two training sessions were conducted to provide instruction in developing and using a cognitive strategy for both dissociation and association groups. Control group subjects also met with the researcher twice, but no instructions for development and use of a cognitive strategy were given. A posttest 2.75 mile, timed run was completed and subjects completed a posttest questionnaire.
Due to differences in procedures for subject recruitment and weather conditions for the posttest run, data from Class A and B were analyzed separately.
Analysis of covariance revealed no statistically significant relationship between teaching of a cognitive strategy and running time for either class.
Posttest questionnaire information was also analyzed. For both classes, statistically significant negative correlations were found between difference for pretest/posttest timed runs and dissociation points as reported on the posttest questionnaire. Also t-tests of independent means showed that association group subjects reported significantly higher levels of association than control group subject for both classes.
It was suggested that although training may have increased the reported use of a cognitive strategy it was not an important factor in running performance. The researcher suggested, instead, that willingness to exert oneself may have been the primary factor in determining performance in relationship to physical limitations.
|
2 |
Tilting trains : Enhanced benefits and strategies for less motion sicknessPersson, Rickard January 2011 (has links)
Carbody tilting is today a mature and inexpensive technology that allows higher train speeds in horizontal curves, thus shortening travel time. This doctoral thesis considers several subjects important for improving the competitiveness of tilting trains compared to non-tilting ones. A technology review is provided as an introduction to tilting trains and the thesis then focuses on enhancing the benefits and strategies for less motion sickness. A tilting train may run about 15% faster in curves than a non-tilting one but the corresponding simulated running time benefit on two Swedish lines is about 10%. The main reason for the difference is that speeds are set on other grounds than cant deficiency at straight track, stations, bridges, etc. The possibility to further enhance tilting trains’ running speed is studied under identified speed limitations due to vehicle-track interaction such as crosswind requirements at high speed curving. About 9% running time may be gained on the Stockholm–Gothenburg (457 km) mainline in Sweden if cant deficiency, top speed, and tractive performance are improved compared with existing tilting trains. Non-tilting high-speed trains are not an option on this line due to the large number of 1,000 m curves. Tilting trains run a greater risk of causing motion sickness than non-tilting trains. Roll velocity and vertical acceleration are the two motion components that show the largest increase, but the amplitudes are lower than those used in laboratory tests that caused motion sickness. Scientists have tried to find models that can describe motion sickness based on one or more motion quantities. The vertical acceleration model shows the highest correlation to motion sickness on trains with active tilt. However, vertical acceleration has a strong correlation to several other motions, which precludes vertical acceleration being pointed out as the principal cause of motion sickness in tilting trains. Further enhanced speeds tend to increase carbody motions even more, which may result in a higher risk of motion sickness. However, means to counteract the increased risk of motion sickness are identified in the present work that can be combined for best effect. Improved tilt control can prevent unnecessary fluctuations in motion sickness related quantities perceived by the passengers. The improved tilt control can also manage the new proposed tilt algorithms for less risk of motion sickness, which constitute one of the main achievements in the present study. Local speed restrictions are another means of avoiding increased peak levels of motion sickness when increasing the overall speed. The improved tilt control and the proposed tilt algorithms have proven to be effective in on-track tests involving more than 100 test subjects. The new tilt algorithms gave carbody motions closer to non-tilting trains. Rather unexpectedly, however, the test case with the largest decrease in tilt gave a greater risk of motion sickness than the two test cases with less reduction in tilt. It is likely that even better results can be achieved by further optimization of the tilt algorithms; the non-linear relation between motions and motion sickness is of particular interest for further study. / QC 20110429
|
3 |
Tilting trains : Technology, benefits and motion sicknessPersson, Rickard January 2008 (has links)
<p>Carbody tilting is today a mature and inexpensive technology allowing higher speeds in curves and thus reduced travel time. The technology is accepted by most train operators, but a limited set of issues still holding back the full potential of tilting trains. The present study identifies and report on these issues in the first of two parts in this thesis. The second part is dedicated to analysis of some of the identified issues. The first part contains Chapters 2 to 5 and the second Chapters 6 to 12 where also the conclusions of the present study are given.</p><p>Chapters 2 and 3 are related to the tilting train and the interaction between track and vehicle. Cross-wind stability is identified as critical for high-speed tilting trains. Limitation of the permissible speed in curves at high speed may be needed, reducing the benefit of tilting trains at very high speed. Track shift forces can also be safety critical for tilting vehicles at high speed. An improved track standard must be considered for high speed curving.</p><p>Chapters 4 and 5 cover motion sickness knowledge, which may be important for the competitiveness of tilting trains. However, reduced risk of motion sickness may be contradictory to comfort in a traditional sense, one aspect can not be considered without also considering the other. One pure motion is not the likely cause to the motion sickness experienced in motion trains. A combination of motions is much more provocative and much more likely the cause. It is also likely that head rotations contribute as these may be performed at much higher motion amplitudes than performed by the train.</p><p>Chapter 6 deals with services suitable for tilting trains. An analysis shows relations between cant deficiency, top speed, tractive performance and running times for a tilting train. About 9% running time may be gained on the Swedish line Stockholm – Gothenburg (457 km) if cant deficiency, top speed and tractive performance are improved compared with existing tilting trains. One interesting conclusion is that a non-tilting very high-speed train (280 km/h) will have longer running times than a tilting train with today’s maximum speed and tractive power. This statement is independent of top speed and tractive power of the non-tilting vehicle.</p><p>Chapters 7 to 9 describe motion sickness tests made on-track within the EU-funded research project<i> Fast And Comfortable Trains (FACT).</i> An analysis is made showing correlation between vertical acceleration and motion sickness. However, vertical acceleration could not be pointed out as the cause to motion sickness as the correlation between vertical acceleration and several other motions are strong.</p><p>Chapter 10 reports on design of track geometry. Guidelines for design of track cant are given optimising the counteracting requirements on comfort in non-tilting trains and risk of motion sickness in tilting trains. The guidelines are finally compared with the applied track cant on the Swedish line Stockholm – Gothenburg. Also transition curves and vertical track geometry are shortly discussed.</p><p>Chapters 11 and 12 discusses the analysis, draws conclusions on the findings and gives proposals of further research within the present area.</p>
|
4 |
Studie výrobního procesu vybrané technologie / The Study of the Production Process Selected TechnologiesRosecká, Eva January 2015 (has links)
This work is focusing on the tracking of selected orders in a company which is mainly engaged in piece production of castings. The aim is, based on the tracking of the course of the pre-production and production phases, to analyse the production process bottlenecks. This is carried out by means of the information system used in the company and through daily tracking of the selected orders. The ascertained time data are divided into the time necessary for the production and the lost time. The scheduled and the actual production times, from order receipt up to the shipment of a finished casting, are entered in the Gantt diagram. In conclusion the work deals with the evaluation of the time lost in production and the proposals for making production more effective are offered.
|
5 |
Tilting trains : Technology, benefits and motion sicknessPersson, Rickard January 2008 (has links)
Carbody tilting is today a mature and inexpensive technology allowing higher speeds in curves and thus reduced travel time. The technology is accepted by most train operators, but a limited set of issues still holding back the full potential of tilting trains. The present study identifies and report on these issues in the first of two parts in this thesis. The second part is dedicated to analysis of some of the identified issues. The first part contains Chapters 2 to 5 and the second Chapters 6 to 12 where also the conclusions of the present study are given. Chapters 2 and 3 are related to the tilting train and the interaction between track and vehicle. Cross-wind stability is identified as critical for high-speed tilting trains. Limitation of the permissible speed in curves at high speed may be needed, reducing the benefit of tilting trains at very high speed. Track shift forces can also be safety critical for tilting vehicles at high speed. An improved track standard must be considered for high speed curving. Chapters 4 and 5 cover motion sickness knowledge, which may be important for the competitiveness of tilting trains. However, reduced risk of motion sickness may be contradictory to comfort in a traditional sense, one aspect can not be considered without also considering the other. One pure motion is not the likely cause to the motion sickness experienced in motion trains. A combination of motions is much more provocative and much more likely the cause. It is also likely that head rotations contribute as these may be performed at much higher motion amplitudes than performed by the train. Chapter 6 deals with services suitable for tilting trains. An analysis shows relations between cant deficiency, top speed, tractive performance and running times for a tilting train. About 9% running time may be gained on the Swedish line Stockholm – Gothenburg (457 km) if cant deficiency, top speed and tractive performance are improved compared with existing tilting trains. One interesting conclusion is that a non-tilting very high-speed train (280 km/h) will have longer running times than a tilting train with today’s maximum speed and tractive power. This statement is independent of top speed and tractive power of the non-tilting vehicle. Chapters 7 to 9 describe motion sickness tests made on-track within the EU-funded research project Fast And Comfortable Trains (FACT). An analysis is made showing correlation between vertical acceleration and motion sickness. However, vertical acceleration could not be pointed out as the cause to motion sickness as the correlation between vertical acceleration and several other motions are strong. Chapter 10 reports on design of track geometry. Guidelines for design of track cant are given optimising the counteracting requirements on comfort in non-tilting trains and risk of motion sickness in tilting trains. The guidelines are finally compared with the applied track cant on the Swedish line Stockholm – Gothenburg. Also transition curves and vertical track geometry are shortly discussed. Chapters 11 and 12 discusses the analysis, draws conclusions on the findings and gives proposals of further research within the present area. / QC 20101119
|
6 |
Optimale Strategien fuer spezielle Reparatursysteme / Optimal control of special repairable systemsBruns, Peter 08 September 2000 (has links)
The thesis contains 3 repairable systems and 2 replacement systems: First a repairable system is considered with Markovian deterioration and imperfect repair, carried out at fixed times. We look for optimal strategies under certain conditions. Two optimality criteria are considered: expected discounted cost and long-run average cost. Conditions are found under which the optimal policy is a control-limit policy as used by Derman or Ross. We explicitly explain how to derive this optimal policy; numerical examples are given, too. The special case of unbounded cost is also studied. With the first model the state space is numerable but with the second it is not. With the fourth model the system occurs a shock process and is only inspected after such a shock. Models 3 and 5 are replacement systems with Morkovian deterioration and finite state space {0,...,N}. A system in state N is considered to be in a very serious situation. Hence there is the condition, e.g. stipulated by law, that the percentage of all replaced machines in state N in the group of all replaced machines may not be larger than 100 epsilon for a fixed epsilon in [0,1]. We prove that a generalized control limit policy maximizes the expected running time of a machine and we explain explicitly how to derive this optimal policy. Illustrated numerical examples are given.
|
7 |
Energy Consumption and Running Time for Trains : modelling of running resistance and driver behaviour based on full scale testingLukaszewicz, Piotr January 2001 (has links)
The accuracy in determined energy consumption and runningtime of trains, by means of computer simulation, is dependent upon the various models used. This thesis aims at developing validated models of running resistance, train and of a generaldriver, all based on full scale testing. A partly new simple methodology for determining running resistance, called by energy coasting method is developed and demonstrated. An error analysis for this methodis performed. Running resistance of high speed train SJ X2000, conventional loco hauled passenger trains and freight trains is systematically parameterised. Influence of speed, number of axles, axle load, track type, train length,and train configuration is studied. A model taking into account the ground boundary layer for determining the influence ofmeasured head and tail wind is developed. Different factors and parameters of a train, that are vital for the accuracy in computed energy consumption and runningtime are identified, analysed and finally synthesized into a train model. Empirical models of the braking and the traction system, including the energy efficiency, are developed for the electrical locomotive of typeSJ Rc4, without energy regeneration. Driver behaviour is studied for freight trains and a couple of driving describing parametersare proposed. An empirical model of freight train driver behaviour is developed from fullscale testing and observations. A computer program, a simulator, is developed in Matlabcode, making use of the determined runningresistance and the developed models of train and driver. The simulator calculates the energy consumption and running time ofa single train. Comparisons between simulations and corresponding measurements are made. Finally, the influence of driving on energy consumption and running time is studied and demonstrated in some examples. The main conclusions are that: The method developed for determining running resistanceis quite simple and accurate. It can be used on any train andon any track. The running resistance of tested trains includes some interesting knowledge which is partly believed to be new. Mechanical running resistance is less than proportional to the actual axle load. Air drag increases approximately linearly with train length and the effect of measured head and tail wind on the air drag can be calculated if the groundboundary layer is considered. The developed train model, including running resistance, traction, braking etc. is quite accurate, as verified for the investigated trains. The driver model together with the train model insimulations, is verified against measurements and shows good agreement for energy consumption and running time. It is recommended to use a driver model, when calculating energy consumption and running times for trains. Otherwise, the energy consumption will most likely be over-estimated.This has been demonstrated for Swedish ordinary freighttrains. / QC 20100526
|
8 |
Ein Beitrag zur Nutzbarmachung Genetischer Algorithmen für die optimale Steuerung und Planung eines flexiblen Stadtschnellbahnbetriebes / Using genetic algorithms for optimal timetabling and control of flexible operation in mass rapid transit systemsAlbrecht, Thomas 01 July 2005 (has links) (PDF)
The work deals with two problems of mass rapid transit system operation: The development of flexible timetables and the realisation of flexible timetables. In both cases, genetic algorithms are used. In the process of (flexible) timetabling in suburban railways, a transport offer perfectly adapted to demand is searched for (temporal and spatial adaptation of demand as well as adaptation of capacity of the trains). After determination of the number of train runs per line and hour and their capacity, optimal departure times have to be found (with a precision of a minute down to 10 s), which fulfil criterias of the passengers (short waiting times) as well as of the operator (small number of vehicles needed). Two different codings for use with genetic algorithms have therefore been developed. They are tested on several case studies of the Dresden suburban railway network, assuming different degrees of flexibilisation. In the process of realising a flexible timetable, transitions between train headways as well as running time and dwell time reserves (margins in the order of a few seconds) are slightly modified in order to coordinate braking and accelerating trains and thereby reduce energy costs of a system of trains. Genetic algorithms can be applied for this problem as well, the proposed methods are tested on several case studies (S-Bahn Berlin, Metro Lille). / Die Arbeit behandelt zwei Probleme der Betriebsplanung von Stadtschnellbahnen: Die Erstellung flexibler Fahrpläne und die Umsetzung flexibler Fahrpläne. In beiden Fällen werden zur Lösung Genetische Algorithmen verwendet. Bei der Ermittlung flexibler Fahrpläne von S-Bahnen wird ein bestmöglich an die Verkehrsnachfrage angepasstes Verkehrsangebot gesucht (zeitlich, räumlich und bezüglich der Kapazität der einzelnen Züge angepasst). Nach stundenfeiner Festlegung der Fahrtenhäufigkeiten und Kapazitäten der einzelnen, sich überlagernden Linien werden deren Abfahrtszeiten gesucht (mit einer Genauigkeit von Minuten bis etwa 10 s), so dass sowohl die Wünsche der Fahrgäste nach gleichmäßigen Zugfolgezeiten als auch Betreiberwünsche (geringe Fahrzeuganzahl) erfüllt werden. Hierzu werden zwei verschiedene Kodierungen für die Verwendung mit Genetischen Algorithmen vorgestellt und das geschaffene Verfahren an verschiedenen Flexibilisierungsszenarien für die S-Bahn Dresden erprobt. Bei der Umsetzung flexibler Fahrpläne, die sich im Bereich weniger Sekunden abspielt, werden Übergänge zwischen Zugfolgezeiten, Fahr- und Haltezeitreserven geringfügig modifiziert, so dass durch bestmögliche Koordination von Anfahr- und Bremsvorgängen eines Systems von Zügen die Energiekosten minimal werden. Methodisch werden wiederum Genetische Algorithmen verwendet, die Erprobung des Verfahrens erfolgt anhand von Linien der S-Bahn Berlin und der Metro in Lille.
|
9 |
Ein Beitrag zur Nutzbarmachung Genetischer Algorithmen für die optimale Steuerung und Planung eines flexiblen StadtschnellbahnbetriebesAlbrecht, Thomas 04 May 2005 (has links)
The work deals with two problems of mass rapid transit system operation: The development of flexible timetables and the realisation of flexible timetables. In both cases, genetic algorithms are used. In the process of (flexible) timetabling in suburban railways, a transport offer perfectly adapted to demand is searched for (temporal and spatial adaptation of demand as well as adaptation of capacity of the trains). After determination of the number of train runs per line and hour and their capacity, optimal departure times have to be found (with a precision of a minute down to 10 s), which fulfil criterias of the passengers (short waiting times) as well as of the operator (small number of vehicles needed). Two different codings for use with genetic algorithms have therefore been developed. They are tested on several case studies of the Dresden suburban railway network, assuming different degrees of flexibilisation. In the process of realising a flexible timetable, transitions between train headways as well as running time and dwell time reserves (margins in the order of a few seconds) are slightly modified in order to coordinate braking and accelerating trains and thereby reduce energy costs of a system of trains. Genetic algorithms can be applied for this problem as well, the proposed methods are tested on several case studies (S-Bahn Berlin, Metro Lille). / Die Arbeit behandelt zwei Probleme der Betriebsplanung von Stadtschnellbahnen: Die Erstellung flexibler Fahrpläne und die Umsetzung flexibler Fahrpläne. In beiden Fällen werden zur Lösung Genetische Algorithmen verwendet. Bei der Ermittlung flexibler Fahrpläne von S-Bahnen wird ein bestmöglich an die Verkehrsnachfrage angepasstes Verkehrsangebot gesucht (zeitlich, räumlich und bezüglich der Kapazität der einzelnen Züge angepasst). Nach stundenfeiner Festlegung der Fahrtenhäufigkeiten und Kapazitäten der einzelnen, sich überlagernden Linien werden deren Abfahrtszeiten gesucht (mit einer Genauigkeit von Minuten bis etwa 10 s), so dass sowohl die Wünsche der Fahrgäste nach gleichmäßigen Zugfolgezeiten als auch Betreiberwünsche (geringe Fahrzeuganzahl) erfüllt werden. Hierzu werden zwei verschiedene Kodierungen für die Verwendung mit Genetischen Algorithmen vorgestellt und das geschaffene Verfahren an verschiedenen Flexibilisierungsszenarien für die S-Bahn Dresden erprobt. Bei der Umsetzung flexibler Fahrpläne, die sich im Bereich weniger Sekunden abspielt, werden Übergänge zwischen Zugfolgezeiten, Fahr- und Haltezeitreserven geringfügig modifiziert, so dass durch bestmögliche Koordination von Anfahr- und Bremsvorgängen eines Systems von Zügen die Energiekosten minimal werden. Methodisch werden wiederum Genetische Algorithmen verwendet, die Erprobung des Verfahrens erfolgt anhand von Linien der S-Bahn Berlin und der Metro in Lille.
|
Page generated in 0.1013 seconds