Spelling suggestions: "subject:"ruthenate""
1 |
High pressure synthesis and study of ternary ruthenatesSinclair, Alexandra L. January 2013 (has links)
Metal oxides containing ruthenium have a surprisingly varied range of low-temperature physical properties including the superconductor Sr2RuO4 and the metallic ferromagnet SrRuO3. The exceptionally broad manifold of itinerate and localised electronic phenomena is derived from broad Ru 4d bands and a wide number of Ru and O containing crystallographic structures. High-pressure is a powerful tool for manipulating crystal structures and tuning the associated electronic and magnetic properties. In this body of work, pressure has been utilised in two roles for the study of ternary ruthenates with perovskite and pyrochlore structures; as a synthetic method and for in situ studies (crystallographic or physical) of existing compounds. Chapter 3 details pressure dependent changes in the crystal structure of the perovskite PbRuO3 by powder x-ray diffraction up to 46 GPa and down to 20 K. PbRuO3 transformed on cooling, from orthorhombic spacegroup (Pnma) to an orbitally ordered low temperature phase, which is also an orthorhombic space group (Imma) and applied pressure reduced the critical temperature totally inhibiting the transition at 5.5 GPa. Additionally PbRuO3 was found to undergo a reversible pressure induced structural phase transition at 30 GPa and 290 K with a 10 % reduction in unit-cell volume. Indexing indicated an orthorhombic symmetry with a Pnna spacegroup. Pnna is not a spacegroup associated with perovskite or related perovskite structures despite the √2 x 2 x √2 perovskite superstructure being maintained across the transition. high-pressure resistivity and Raman measurements indicated that a metal-insulator transition accompanied the structural transition. In Chapter 4 high-pressure high-temperature (HP-HT) synthesis has been used to isolate dense phases that could not be produced at ambient pressure. The ortho-perovskite LaRuO3 with space group Pnma (# 62) was synthesised by conventional solid state methods. However to extend the series by substituting the smaller rare-earth cations, Ln3+ on the A-site of the same perovskite structure HP-HT (10 GPa and 1200° C) conditions were required. A powder diffraction study confirmed the Pnma structure of LnRuO3 where, Ln = Pr, Nd, Sm, Eu, Gd, Dy and Ho, of which the later rare-earth compounds, where Ln = Sm to Ho have not been synthesised before. Neutron powder diffraction studies of LnRuO3 where Ln = La, Pr and Nd down to 7 K suggests a ~ 10 % non-stoichiometry on the Ru site, leading to the adjusted formula LnRu0.9O3 with an unusually low Ru3.3+ valency. A possible exception to the low Ru oxidation state is EuRuO3, which has a larger unit-cell, suggesting a Eu2+Ru4+O3 charge distribution with the more common Ru4+, however, this is not concordant with magnetisation measurements. Additionally neutron diffraction suggests that the RuO6 octahedra are distorted by spin-orbit coupling. Magnetometry and resistivity measurements indicate that the compounds are semiconducting paramagnets down to 7 K. Finally in Chapter 5 is presented the analysis of a high-pressure powder x-ray diffraction experiment of the pyrochlore Tl2Ru2O7. Carried out at synchrotron facilities, we have extended the pressure-temperature phase diagram to 3.7 GPa and 25 K. Previously it had been reported that, when cooled, Tl2Ru2O7 undergoes a structural phase transition from a cubic (Fd-3m) phase to a low temperature, orthorhombic (Pnma) phase that forms Haldane chains - an unusual one-dimensional orbital ordering. As for PbRuO3 high-pressure conditions are found to inhibit the orbital ordering, to reduce the critical temperature and to suppress the transition at pressures exceeding 3.0 GPa.
|
2 |
High-pressure synthesis of the 4d and 5d transition-metal oxides with the perovskite and the perovskite-related structure and their physical propertiesCheng, Jinguang 30 September 2010 (has links)
A Walker-type multianvil high-pressure facility is capable of high-pressure syntheses and measurements beyond 10 GPa and has been utilized in my research to synthesize the 4d Ruthenium and Rhodium and the 5d Iridium oxides with the perovskite-related structures. Under high-pressure and high-temperature conditions, these families of oxides can be enlarged to a great extent so that enables us not only to address the long-standing problem about ferromagnetism in the perovskite ruthenates but also explore new phenomena associated with the structural and electronic properties in the iridates and rhodates. In the perovskite ruthenates ARuO₃ (A= Ca, Sr, and Ba), a systematic study of the variations of the ferromagnetic transition temperature T[subscript c] and the critical isothermal magnetization as a function of the average A-site cation size and the size variance as well as external high pressures reveals explicitly the crucial role of the local lattice strain and disorder on T[subscript c] and the nature of the localized-electron ferromagnetism. However, such a steric effect is dominated by the electronic effect in another perovskite ruthenate PbRuO₃, which is a paramagnetic metal down to 1.8 K and undergoes a first-order structural transition to a low-temperature Imma phase at Tt [almost equal to] 90 K. Bandwidth broadening due to orbital hybridization between Pb-6s and Ru-4d plays an important role in suppressing the ferromagnetism in the Sr1-zPbzRuO₃ system. The high-pressure sequence of the 9R-BaIrO₃ was explored and three more polytypes, i.e. 5H, 6H and 3C, were identified under 10 GPa. With increasing fraction of the corner- to face-sharing IrO₆/₂ octahedra, the ground states of BaIrO₃ evolve from a ferromagnetic insulator with T[subscript c] [almost equal to] 180 K in the 9R phase to a ferromagnetic metal with T[subscript c] [almost equal to] 50 K in the 5H phase, and finally to an exchange-enhanced paramagnetic metal near a quantum critical point in the 6H phase. In addition to the perovskite SrRhO₃, a new 6H polytype was synthesized for the first time under high pressure and a pressure-temperature phase diagram was given for the 6H-perovskite transformation. Restoration of the Curie-Weiss behavior in the high-temperature magnetic susceptibility [chi](T) of the perovskite SrRhO₃ resolves the puzzle about unusual dependence of [chi]⁻¹ [symbol] T² reported earlier and highlights the importance of spin-orbit coupling in the 4d and 5d transition-metal oxides. / text
|
3 |
TUNNELING SPECTROSCOPY STUDY OF CALCIUM RUTHENATEBautista, Anthony 01 January 2010 (has links)
The ruthenates are perhaps one of the most diverse group of materials known up to date. These compounds exhibit a wide array of behaviors ranging from the exotic pwave superconductivity in Sr2RuO4, to the itinerant ferromagnetism in SrRuO3, and the Mott-insulating behavior in Ca2RuO4. One of the most intriguing compounds belonging to this group is Ca3Ru2O7 which is known to undergo an antiferromagnetic ordering at 56K and an insulating transition at 48K. Most intriguing, however, is the behavior displayed by this compound in the presence of an external magnetic field. For fields parallel to the a-axis, the compound undergoes a metamagnetic transition into the ferromagnetic region at 6 T. If the external field direction is changed to the b-axis then the result will be different. colossal magnetoresistance occurs and a fall in reistivity of up to three orders of magnitude is recorded at fields of 15T.
Most interesting, however, is the energy gap observed for this material. A number of groups have measured such gap with different methods and found conflicting results. For this reason it was of vital importance to perform measurements on this compound and try to resolve this issue. Tunneling spectroscopy is one of the most powerful techniques which can be used to probe the electronic properties of a material. The method is best suited to measure the density of states of a material and hence the nature of the strong correlations which dictate the properties of the compound. We performed a series of tunneling spectroscopy measurements by means of planar tunnel junctions. These types of junctions were chosen because of their stability over a large temperature range and their stability in the presence of an external field.
The anisotropies which showed up in the resistivity and magnetization measurements manifested also in our data. For tunneling parallel to the a-axis, we observed a gap opening at 48K with a width a peak to peak width of 2Δa ~258±15meV. As the temperature was lowered, the gap size increased reaching a maximum width of 2Δa ~ 845±38meVat 4.2K. Tunneling parallel to the b-axis, the gap has a much smaller size than the a-axis gap. At 48K the gap width is about 2Δb ~ 201±13 meV and reaches a maximum width of 2Δb ~ 366±33 meV at 4.2K. For the c-axis, the situation is different since the gap opens at 56K instead of 48K. The gap width at 56K is about 2Δc ~ 102±6meV and reaches a maximum width of 2Δc ~ 179±14 meV at 4.2K.
In the presence of an external field, we noticed that the overall behavior was always the same in the ab-plane but differed in c-axis direction. In our experiment, an external field was applied along the a-axis and measurements were made at 4.2K. For aaxis tunneling, the gap width decreased to a value of 2Δa ~ 587±27 meV at 4.2 K at 7T. On the other hand, the gap width in the b-axis direction decreased to a value of 2Δb ~ 308±25 meV for the same field. For the c-axis direction, the gap decreased to a value of 2Δc ~ 112±8 meV at 7T. The DOS of the c-axis differs for fields of 6T and above. A third peak emerges inside the gap on the valence side of the DOS. This third peak seems to be a direct consequence of the metamagnetic transition at 6T observed by other groups and may be attributable to a spin-filtering effect.
|
4 |
Dimer solid-liquid transition in the honeycomb-lattice ruthenate Li2-xRuO3 / ハニカム格子ルテニウム酸化物Li2-xRuO3におけるダイマー固体・液体転移Jimenez, Segura Marco Polo 25 July 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19913号 / 理博第4213号 / 新制||理||1605(附属図書館) / 32999 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前野 悦輝, 教授 石田 憲二, 教授 川上 則雄 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
5 |
The de Haas van Alphen effect near a quantum critical end point in Sr₃Ru₂O₇Mercure, Jean-Francois January 2008 (has links)
Highly correlated electron materials are systems in which many new states of matter can emerge. A particular situation which favours the formation of exotic phases of the electron liquid in complex materials is that where a quantum critical point (QCP) is present in the phase diagram. Neighbouring regions in parameter space reveal unusual physical properties, described as non-Fermi liquid behaviour. One of the important problems in quantum criticality is to find out how the Fermi surface (FS) of a material evolves near a QCP. The traditional method for studying the FS of materials is the de Haas van Alphen effect (dHvA). A quantum critical end point (QCEP) has been reported in the highly correlated metal Sr₃Ru₂O₇, which is tuned using a magnetic field high enough to perform the dHvA experiment. It moreover features a new emergent phase in the vicinity of the QCEP, a nematic type of electron ordering. The subject of this thesis is the study of the FS of Sr₃Ru₂O₇ using the dHvA effect. Three aspects were explored. The first was the determination of the FS at fields both above and below that where the QCEP arises. The second was the search for quantum oscillations inside the nematic phase. The third was a reinvestigation of the behaviour of the quasiparticle effective masses near the FS. In collaboration with angle resolved photoemission spectroscopy experimentalists, a complete robust model for the FS of Sr₃Ru₂O₇ at zero fields was determined. Moreover, the new measurements of the quasiparticle masses revealed that no mass enhancements exist anywhere around the QCEP, in contradiction with previous specific heat data and measurements of the A coefficient of the power law of the resistivity. Finally, we report dHvA oscillations inside the nematic phase, and the temperature dependence of their amplitude suggests strongly that the carriers consist of Landau quasiparticles.
|
6 |
A SYSTEMATIC STUDY ON THE THERMODYNAMIC AND TRANSPORT PROPERTIES OF LAYERED RUTHENATESLin, Xiunu 01 January 2006 (has links)
In the 4d transition metal oxides, the extension of the 4d orbitals leads to comparable and thus competitive kinetic and coulomb energies. As a result, small perturbations can induce significant changes in their physical properties, giving rise to a class of exotic phenomena that are rarely found in other materials. The ruthenates materials with readily tunable parameters open an avenue to study the strong electronic correlation in the rarely explored territory: the 4d transition metal oxides.
The bilayered system, Ca3Ru2O7, belongs to the Ruddlesden-Popper series in which the physical properties are intimately linked to the lattice degrees of freedom. Ca3Ru2O7, with its quasi-2D and severe structure distortion, is believed to be placed in a unique position at which the role of orbital degrees of freedom is highlighted. The system displays strikingly different behaviors when the field is applied along different crystalline axes. A ferromagnetic (FM) state with full spin polarization is achieved for B||a-axis, but colossal magnetoresistance is realized only for B||b-axis by avoiding the ferromagnetic state. In addition, for B rotating within the ac-plane, slow and strong SdH oscillations periodic in 1/B are observed for T.1.5 K in the presence of metamagnetism. For B|| [110], oscillations are also observed but periodic in B (rather than 1/B) and persist up to 15 K. These properties together with highly unusual spin-charge-lattice coupling near the Mott transition (48 K) are driven by the orbital degrees of freedom.
Complex thermodynamic properties are also observed in the other ruthenates system such as Sr4Ru3O10 and Pr3RuO7. The Sr4Ru3O10 is a triple-layered system that shows a dedicate balance between fluctuations and order. Besides the anomaly at TC=102K, anomalous behavior at low temperatures are also observed in the thermal study, indicative of an unusual magnetic order in this material. The Pr3RuO7 shows one-dimensional structure with zig-zag chain of corner sharing RuO6 octahedra running in parallel with the rows of edge-shared PrO8 pseudo-cubes. Magnetic and thermal properties studies on its single crystals indicate that the exchange interaction is strongly anisotropic. A Schottky-type anomaly at low temperature suggests that the gorderedh chain Pr ions are still sensitive to a crystal field.
|
7 |
Topochemical Manipulation of Layered PerovskitesJosepha, Elisha A 04 August 2011 (has links)
Topochemical strategies, techniques that allow one to effectively manipulate the structures of nonmolecular solids once a crystal lattice is established, are effective in the low temperature (< 500 °C) modification of solid state structures, allowing the preparation of nonmolecular compounds not accessible by standard synthetic routes. Some of the techniques, ion exchange, intercalation/deintercalation, have proven to be excellent synthetic methods for preserving specific frameworks. The combination of these techniques can allow one to create a multistep approach that can be used to design new compounds with interesting properties.
As an expansion to the field of topotactic reactions, a multistep approach was developed towards the synthesis of the new compounds (A xM0.5Cly)LaNb2O7 (where A = Rb, Cs; M = Fe, Ni; x ≈ 1.5;y ≈ 1) at temperatures below 400oC. The first reaction step involved the ion exchange of the host materials (ALaNb2O7, A = Rb, Cs) to form the products M0.5LaNb2O7 (where M = Fe, Ni), a structure open to further chemistry. The next step involved reductive intercalation with Rb or Cs metal to form the air sensitive mixed-valence products with the nominal compositions, A1.5M0.5LaNb2O7. The last step involved the oxidative intercalation of chlorine using chlorine gas to obtain the final compounds. This multistep approach is a design to form mix-metal halide layers, specifically those with divalent cations, within layered perovskites, opening the doors to compounds that can have interesting properties.
This reaction series was also applied to the tantalate layered oxides, leading to the formation of the new compound Ni 0.5LaTa2O7 through ion exchange. The further multistep
topochemical manipulation of this new compound was not successful and was indicative of the difference in chemical behavior of the tantalates versus the niobates.
We have also investigated the oxidative intercalation of halogens into a series of Ruddlesden-Popper (R-P) ruthenate oxides with the formula Ae n+1RunO3n+1 (Ae = Ca, Sr; n = 1, 2, 3) using several sources of fluorine, chlorine, and bromine. A new method was developed to intercalate chlorine into layered systems; this new approach avoids the use of chlorine gas which is highly toxic. The new phase Sr3Ru2O7Cl0.7 was synthesized by the new method and further topotactic manipulations were explored. The chemistry was not limited to the n = 2 phase but was also applied to the n = 3 phase, Sr4Ru3O10.
|
8 |
Angle-Resolved Photoemission Studies on Ruthenates and Iron-Based SuperconductorsNeupane, Madhab January 2010 (has links)
Thesis advisor: Ziqiang Wang / Angle-resloved photoemission spectroscopy (ARPES) is a powerful technique to study the electronic structure in solids. Its unique ability of resolving the energy and momentum information of electrons inside a solid provides an essential tool in measuring the electronic structure of solids. ARPES has made great contributions in the understanding of correlated system such as high-T<sub>c</sub> superconductors and ruthenates. The Metal-insulator transition is a fundamental problem in condensed matter physics. The calcium substituted strontium ruthenate, Ca<sub>2-x</sub>Sr<sub>x</sub>RuO<sub>4</sub>, provides a good platform to study the metal-insulator transition in multi-orbital systems. This system has a complex phase diagram that evolves from a <italic>p</italic>-wave superconductor to a Mott insulator. One of important projects of this thesis focuses on Ca<sub>2-x</sub>Sr<sub>x</sub>RuO<sub>4</sub> The growing evidence for coexistence of itinerant electrons and local moments in transition metals with nearly degenerate d orbitals suggests that one or more electron orbitals undergo a Mott transition while the others remain itinerant. We have observed a novel orbital selective Mott transition (OSMT) in Ca<sub>1.8</sub>Sr<sub>0.2</sub>RuO<sub>4</sub> by ARPES. While we observed two sets of dispersing bands and Fermi surfaces (FSs) associated with the doubly-degenerate d<sub>yz</sub> and d<sub>zx</sub> orbitals, the Fermi surface associated with the d<sub>xy</sub> orbital which has a wider bandwidth is missing as a consequence of selective Mott localization. Our theoretical calculations have demonstrated that this unusual OSMT is mainly driven by the combined effects of inter-orbital carrier transfer, superlattice potentials and orbital degeneracy, whereas the bandwidth difference plays a less important role. Another important project of this thesis focuses on the recently discovered iron-pnictides superconductors. The idea of inter-FS scattering associated with the near-nesting condition has been proposed to explain the superconductivity in the pnictides. The near-nesting condition varies upon the carrier doping which shifts the chemical potential. We have performed a systematic photoemission study of the chemical potential shift as a function of doping in a pnictide system based on BaFe<sub>2</sub>As<sub>2</sub>. The experimentally determined chemical potential shift is consistent with the prediction of a rigid band shift picture by the renormalized first-principle band calculations. This leads to an electron-hole asymmetry (EHA) due to different Fermi velocities for different FS sheets, which can be calculated from the Lindhard function of susceptibility. This built-in EHA from the band structure, which is fully consistent with the experimental phase diagram, strongly supports that inter-FS scattering over the near-nesting Fermi surfaces plays a vital role in the superconductivity of the iron pnictides. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
Page generated in 0.0423 seconds