• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 12
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 21
  • 16
  • 15
  • 15
  • 14
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Photocatalytic Activity Of Praseodymium Doped Titanium Dioxide

Dogu, Doruk 01 October 2012 (has links) (PDF)
In this study nanocrystalline TiO2 was synthesized by a sol-gel process. The effect of praseodymium (Pr) doping and calcination conditions on the textural properties of nano structured particles and photocatalytic activity were examined. Samples were synthesized by hydrolyzation of titanium tetra iso-propoxide (TTIP) and calcination at different temperatures. Characterizations of the samples were carried out using XRD, BET, XPS, TEM, and EDAX analyses. It was observed that anatase to rutile transformation is favored by higher calcination temperatures. The XRD analysis indicated that the anatase structure is stabilized by Pr doping and rutile phase formation at higher calcination temperatures is inhibited by the addition of Pr. It was also observed that Pr doping enhances the surface area and inhibit crystal growth. Phase stabilization effect of Pr doping was also confirmed by XPS results. EDAX analysis revealed that Pr is dispersed atomically in the crystal structure. The Photoluminescence analysis by 325 nm excitation indicated the emissions at 608 and 621 nm which can be attributed by photon up-conversion. The photocatalytic activities of the samples were measured by methylene blue degradation and phenol mineralization reactions. The photocatalytic activities of the Pr doped samples were also found higher than undoped TiO2 samples.
32

Flotation Characteristics Of Minerals In Feldspar Ores

Ozun, Savas 01 March 2012 (has links) (PDF)
Albite (Na-feldspar) and orthoclase (K-feldspar) are the major feldspar minerals used in the production of glass and ceramics. They are found together with impurities like biotite, muscovite, quartz and rutile which are not desired for ceramics and glass industries. Therefore, these have to be removed to make the ore available for industrial use. In order to shed light on the actual feldspar ores, in this study / the flotation characteristics of albite, biotite, muscovite, orthoclase, quartz and rutile were investigated separately in their pure forms. In the investigation, the electrokinetic potential measurements and micro-flotation studies have been carried out to get information about their flotation characteristics under the effect of three different collectors, Aero 704, Aero 3000C and Aero 825, and the pH of the medium. The flotation recoveries were found to be pH dependent and the effective between the pH range of 7.0 and 11.5 in the presence of Aero 704. In the case of flotation with Aero 3000C, the recoveries reached up to 95.0% at certain concentrations and pH values and decreased sharply below pH 3.0 and above pH 9.5 for all the minerals tested. In the presence of Aero 825, the flotation recoveries of the minerals except for rutile, were found to be insufficient even with its highest concentration. In order to evaluate the adsorption mechanism of the collectors, Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy (FTIR) analyses were carried out. From the AFM results it might be deduced that the behavior of Aero 3000C and Aero 825 was found to be almost similar for biotite and muscovite as monolayer adsorption and for the remaining minerals, albite, orthoclase, quartz and rutile, as monolayer and bilayer adsorption together. In the case of Aero 704, for albite and orthoclase, the adsorption of the collector might be the reason for monolayer and bilayer formation on their surfaces. The strength of the interaction of the collectors on the mineral surfaces was followed by FTIR analyses before and after acetone washing. The interaction of all the collectors was found to be weak in the case of albite, orthoclase, quartz and rutile whereas the interaction of Aero 704 and Aero 3000C was found to be strong in the case of biotite and muscovite.
33

Hydrogen-related defects in ZnO and TiO2

Herklotz, Frank 27 February 2012 (has links) (PDF)
Hydrogen-related defects in single-crystal ZnO and rutile TiO2 are investigated by means of infrared absorption, Raman scattering, photoluminescence and photoconductivity. Four different defect centers in ZnO are considered: bond-centered hydrogen (HBC ), hydrogen bound within the oxygen vacancy (HO), hydrogen molecules, and a defect, which gives rise to a local vibrational mode at 3326 cm−1 . The measurements identify HBC as a shallow donor with an ionization energy of 53 meV. The internal 1s → 2p transition of HBC is detected at 330 cm−1 in the Raman scattering and photoconductivity spectra. The decay of an exciton bound to HBC results in the photoluminescence line at 3360.1 ± 0.2 meV. The local vibrational mode of the O–H bond for bond-centered hydrogen has a frequency of 3611 cm−1 (H-I) and an effective charge of 0.28±0.03e. It is found that bond-centered hydrogen is unstable against annealing at 190 °C due to diffusion and trapping by other defects. The dominant sink is the hydrogen molecule. It is demonstrated that the well-known I4 photoluminescence line at 3362.8 meV is due to the recombination of excitons bound to the HO donor. The ionization energy of the HO donor is determined to be 47 meV. The 1s → 2pz (2pxy) electronic transition of HO is detected at 265 cm−1 in photoconductivity spectra. The formation of HO occurs via trapping of HBC at vacancies left by out-diffusing oxygen. It is shown that sub-band gap illumination leads to an intensity reduction of the O–H local vibrational mode at 3326 cm−1 and the appearance of a previously unreported infrared absorption line at 3358 cm−1. The signals are identified as stretch modes of an O–H bond associated with the same defect in different charge states. The measurements indicate that this defect has a deep level in the band gap of ZnO at roughly Ec − 1.7 eV. Additionally, results on the thermal stability, uniaxial stress response, and temperature dependence of the transition rates between the two charge states of this defect are presented. Interstitial hydrogen in rutile TiO2 is studied by infrared absorption. It is shown that the defect is a shallow donor with an ionization energy of 10 meV. The absorption lines at about 3290 cm−1 consists of local vibrational modes due to the neutral and the positive charge states of the donor with relative intensities depending on the measurement conditions. In the neutral charge state, the defect reveals two modes at 3288.3 and 3292 cm−1 (10 K), whereas the positive charge state has a vibrational mode at 3287.4 cm−1. An unknown hydrogen complex was found to contribute to the 3288 cm−1 feature.
34

TiO2(110) surface structure

Busayaporn, Wutthikrai January 2010 (has links)
In this thesis three studies of the geometric structure of the (110) surface of single crystal rutile TiO2 are presented. Firstly, quantitative low energy electron diffraction (LEED-IV) data acquired from TiO2(110)(1x1) are reanalysed to confirm the integrity of the previously reported optimized geometries by performing structural optimisation as a function of depth into the selvedge. The second study addresses the geometry of the x-linked (1x2) reconstruction of the same surface. Again, LEED-IV data are analysed to quantitatively determine the surface structure. Part of this effort involved substantial development of the code (SATLEED) employed for simulating the experimental data, to allow simultaneous optimisation of more than one surface termination. In contrast to recent scanning probe work, the analysis indicates that the surface consists of two differently relaxed Ti2O3 added rows. The last study concerns ab initio calculations of the structure of benzoate on TiO2(110)(1x1). Of particular interest is the impact of surface coverage on the orientation of the benzene ring. It is predicted that the benzene ring twists and tilts away from high symmetry with increasing coverage due to adsorbate-adsorbate interactions. No evidence is found to support the formation of benzoate dimers or trimers, as was concluded in earlier experimental work.
35

Process development for the production of beneficiated titania slag

Van Dyk, Jacobus Philippus 12 October 2009 (has links)
There is a range of feed materials available for the production of Ti02 pigment. These range from natural materials like ilmenite and rutile to synthetic materials like synthetic rutile. There is a large increase in the price of titaniferous feed materials as the Ti02content of the material increases. To take advantage of the difference in price between chloride grade slag and natural rutile a process was developed to increase the Ti02 content of chloride grade slag from ~85% to more than 95%. This beneficiated titania slag product (BTS) should be ideal as feed material to the chloride pigment process. Initially several processes were evaluated. Particular emphasis was placed on the slag pre-treatment procedure. This was necessary as impurities could only be leached with difficulty from as-cast slag. A suitable pre-treatment procedure would render the impurities easily leachable, while the titanium is retained in an insoluble form. The results indicated that a process consisting of oxidation and reduction roasting would satisfy these requirements. Detailed process development was then undertaken on this process. The first phase of the process development was conducted in a coal fired fluid bed roaster. This allowed a set of semi optimised process parameters to be established, but the highest Ti02 content that could be achieved was 94%. A second stage of process development was under taken under more controlled conditions, using a small fluid bed reactor connected to a gas mixing system. Based on the results in this phase of the process development a new set of optimum process parameters was established. They are oxidation at 850°C for 1.5 h in an atmosphere containing 8% O2; reduction at 850°C for 10 min in a 100% CO atmosphere and leaching in boiling 20% hydrochloric acid for 12 h. Under these conditions it was possible to produce BTS containing > 97% Ti02. During oxidation of titania slag several important morphological changes occur. These are the conversion of the original M305 phase in the slag to a mixture of rutile/anatase, hematite and ferric M305. In the process the iron in the slag migrates to the outside surfaces of the slag particles where it is easily accessible during leaching. The iron containing phases are converted to ilmenite during reduction and during leaching the ilmenite is removed. This yields the BTS product. As the oxidation roast appeared to be a very important of the BTS process it was decided to investigate the mechanism of titania slag oxidation. A mechanism based on the nucleation energy that is required to form the relevant phases during oxidation was proposed. This mechanism was tentatively confirmed through selected experiments. / Thesis (PhD)--University of Pretoria, 2009. / Materials Science and Metallurgical Engineering / unrestricted
36

Cooling characteristics of high titania slags

Bessinger, Deon 21 July 2006 (has links)
Please read the abstract in the section 00front of this document Copyright 2000, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bessinger, D 2000, Cooling characteristics of high titania slags, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-07212006-102324 / > H 95 / Dissertation (MSc (Metallurgy))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
37

Texture and composition of scheelite, tourmaline and rutile in orogenic gold deposits

Sciuba, Marjorie January 2020 (has links)
La scheelite, la tourmaline et le rutile des gisements d'or orogénique, encaissés dans des roches de composition et de faciès métamorphique variés ont été étudiés pour établir des paramètres discriminants pour contraindre les campagnes utilisant les minéraux indicateurs pour l'exploration aurifère. La texture et les associations minérales ont été investiguées par microscopie optique et microscopie électronique à balayage (MEB). La scheelite, la tourmaline et le rutile présentent une grande variabilité de taille, de texture et d'association minérale, qui ne sont pas informatives pour les campagnes de minéraux indicateurs. La composition minérale a été déterminée par microsonde électronique (EPMA) et ablation laser et spectroscopie de masse avec plasma couplée par induction (LA-ICP-MS). Les résultats ont été investigués par des diagrammes élémentaires et des analyses multivariées incluant des analyses en composantes principales (PCA) et des analyses de réduction des moindres carrées (PLS-DA). La composition et le faciès métamorphique des roches encaissantes régionales exercent un fort contrôle sur la composition en éléments traces de la scheelite, de la tourmaline et du rutile. Dans la scheelite, Sr, Pb, U, Th, Na, Éléments des Terres Rares (ETR) et Y; dans la tourmaline Ga et Sn; et dans le rutile Nb, Ta, V et Cr varient avec la composition de la roche encaissante. Dans la scheelite, ETR, Y, Sr, Mn, Nb, Ta et V; dans la tourmaline, Ga, Sn, Ti, ETR, Zr, Hf, Nb, Ta, Th et U; et dans le rutile Nb, Ta, V et Cr varient avec le faciès métamorphique des roches encaissantes. La composition en éléments traces de la scheelite varie avec l'âge de la roche encaissante alors que la tourmaline et le rutile ne montrent pas de variation compositionnelle avec l'âge de l'encaissant. La variation compositionnelle résulte des échanges fluide-roche lors de la circulation du fluide hydrothermal jusqu'au site de dépôt de l'or. Les résultats pour les minéraux des gisements d'or orogénique sont comparés avec ceux d'autres types de gîtes et de paramètres géologiques variées de la littérature. La scheelite et la tourmaline des gisements d'or orogénique présentent clairement une variation compositionnelle distincte comparée à celle d'autres types de gîtes et paramètres géologiques. La scheelite des gisements d'or orogénique a une signature distincte en Sr, Mo, Eu, As et Sr/Mo mais similaire en ETR par rapport à la scheelite provenant d'autres types de gîtes. Les diagrammes binaires tels que Sr/Li vs V/Sn, Sr/Sn vs V/Nb, Sr/Sn vs Ni/Nb et Sr/Sn vs V/Be discriminent la tourmaline des gisements d'or orogénique de celle provenant d'autres sources. Les diagrammes élémentaires mettent en avant une variation transitionnelle de la composition en éléments traces de la tourmaline provenant d'environnement métamorphique, à hydrothermal-magmatique, à magmatique. Le rutile des gisements d'or orogénique a une composition distincte en Mn, V, Sn, Sb et W comparée aux rutiles provenant d'autres types de gîtes et paramètres géologiques. Les diagrammes binaires incluant V vs Sb et Nb/V vs. Sn/V discriminent le rutile des gisements d'or orogénique et celui provenant des environnements magmatique-hydrothermaux et magmatiques. D'autres diagrammes binaires tel que Nb/V vs W permettent de distinguer partiellement le rutile des gisements d'or orogénique et celui provenant d'environnement hydrothermaux et métamorphique-hydrothermaux. / Scheelite, tourmaline and rutile from orogenic gold deposits and districts, hosted in varied country rocks and metamorphic facies of various ages were investigated to establish discriminant features to constrain indicator mineral surveys for gold exploration. Texture and mineral associations were investigated by optical microscopy and Scanning Electron Microscopy (SEM). Scheelite, tourmaline and rutile present a wide range of size, texture, and mineral association that are not informative for indicator mineral surveys. Mineral composition was determined using Electron Probe Micro-Analyzer (EPMA) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results were investigated with elemental plots and multivariate statistics including Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA). The composition of the metamorphic facies of the local country rocks as well as the regional country rocks exert a strong control on scheelite, tourmaline and rutile trace element composition. In scheelite Sr, Pb, U, Th, Na, REE and Y; in tourmaline Ga and Sn; and in rutile Nb, Ta, V and Cr vary with the country rock composition. In scheelite, REE, Y, Sr, Mn, Nb, Ta and V; in tourmaline, Ga, Sn, Ti, REE, Zr, Hf, Nb, Ta, Th and U; and in rutile Nb, Ta, V and Cr vary with the metamorphic facies of the country rocks. Scheelite trace element composition vary with the country rock age whereas tourmaline and rutile do not show any compositional variation with the country rock age. Compositional variation results of fluid-rock exchange during fluid flow to gold deposition site. Results for minerals from orogenic gold deposits are compared with those from various deposit types and geological settings from literature. Scheelite and tourmaline from orogenic gold deposits present clearly a distinct compositional variation, compared to scheelite and tourmaline from other deposit types and geological settings. Scheelite from orogenic gold deposits have distinct Sr, Mo, Eu, As and Sr/Mo, but indistinguishable REE signatures, compared to scheelite from other deposit types. Binary plots such as Sr/Li vs V/Sn, Sr/Sn vs V/Nb, Sr/Sn vs Ni/Nb and Sr/Sn vs V/Be discriminate orogenic gold deposit tourmaline from that from other sources. Elemental plots highlight a transitional variation in the trace element composition of tourmaline from metamorphic, to hydrothermal-magmatic to, magmatic environments. Rutile from orogenic gold deposits has a distinctive Mn, V, Sn, Sb and W composition compared to those from various deposits types and geological settings. Binary diagrams, including V vs Sb and Nb/V vs Sn/V, discriminate rutile from orogenic gold deposits from those from hydrothermal-magmatic and magmatic deposit types. Other binary diagrams, such as Nb/V vs W, discriminate partially orogenic gold deposit rutile from hydrothermal and metamorphic-hydrothermal environments.
38

Process development for the removal of iron from nitrided ilmenite

Swanepoel, Jaco Johannes 11 July 2011 (has links)
The Council for Scientific and Industrial Research (CSIR) in South Africa is developing a process to produce titanium tetrachloride from a low-grade material such as ilmenite. Titanium tetrachloride can then be used as feed material for titanium metal or pigment-grade titanium dioxide production. Titanium tetrachloride is commercially produced by chlorinating synthetic rutile (<92% TiO2) or titanium dioxide slag (<85% TiO2) at ~900 ˚C. A drawback of chlorination at this temperature is that any constituents other than TiO2 will end up as hazardous waste material. A characteristic step in the CSIR’s proposed process is to nitride titanium dioxide contained in the feed material before it is sent for chlorination. The chlorination of the resulting titanium nitride is achieved at a much lower temperature (~200 ˚C) than that of the existing titanium dioxide chlorination reaction. An added advantage of the low-temperature chlorination reaction is that chlorine is selective mostly towards titanium nitride and metallic iron, which means that any other constituents present are not likely to react with the chlorine. The result is reduced chlorine consumption and less hazardous waste produced. The nitrided ilmenite must, however, be upgraded by removing all iron before it can be sent for chlorination. Commercial ilmenite upgrading processes, called synthetic rutile production, also require the removal of iron and other transition metals before chlorination. A literature review of existing ilmenite upgrading processes revealed four possible process options that could remove iron from nitrided ilmenite. Two of these process options, the Becher and Austpac ERMS SR processes, are proven process routes. The other two are novel ideas – one to passivate iron contained in the nitrided ilmenite against chlorination and the other to use ammonium chloride (as used in the Becher process) as a stoichiometric reactant to produce a ferrous chloride solution. A preliminary experimental evaluation of these process options indicated that the Austpac ERMS SR process is the most viable option for removing iron from nitrided ilmenite. The Austpac ERMS SR process was therefore selected as a template for further process development. A detailed Austpac ERMS SR process review found that two process units in the Austpac ERMS SR process could be used in a process that separates iron from nitrided ilmenite. These are the Enhanced Acid Regeneration System and the Direct Reduced Iron process units. The review also concluded that another leach unit would have to be developed. It was therefore necessary to further investigate the dissolution of nitrided ilmenite in hydrochloric acid. A detailed experimental evaluation of nitrided ilmenite dissolution in hydrochloric acid found that hydrochloric acid could be used as the lixiviant to selectively remove iron from nitrided ilmenite. The dissolution of metallic iron in 90 ˚C hydrochloric acid reached levels of at least 96% after only 60 minutes. An average “combined resistance” rate law was found that could be used to describe this dissolution reaction. The observed activation energy and Arrhenius pre-exponential factor were found to be equal to 9.45 kJ.mol-1 and 30.8 s-1 respectively. The Austpac ERMS SR process review and experimental results described above were then combined and used to propose a process that could be employed to remove iron from nitrided ilmenite. The proposed process was modelled using the Flowsheet Simulation module in HSC Chemistry 7.0 / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2010. / Chemical Engineering / MEng (Chemical Engineering) / unrestricted
39

Palladium Doped Titanium Dioxide Nanofiber Based Catalytic Support To Reduce Nitric Oxide Over Carbon Monoxide Gas

Shahreen, Laila 27 August 2013 (has links)
No description available.
40

Modélisation de l’adsorption de l’ion uranyle aux interfaces eau/TiO2 et eau/NiO par dynamique moléculaire Born-Oppenheimer / Born-Oppenhaimer molecular dynamics investigation of the adsorption of uranyl ion at the water/ TiO2 and water/ NiO interfaces

Sebbari, Karim 27 October 2011 (has links)
Ce travail, effectué dans le cadre d’une collaboration entre l’IPN d’Orsay et EDF, contribue aux études destinées à améliorer la compréhension du comportement des radioéléments en production (centrale en fonctionnement) et à l’aval du cycle électronucléaire (stockage géologique profond des déchets). Le comportement et l’évolution des radioéléments sont fortement dépendants des interactions aux interfaces eau / surface minérale, phénomènes complexes et souvent difficiles à caractériser in situ (en particulier, dans le cas du circuit primaire des centrales REP). La dynamique moléculaire basée sur la théorie de la fonctionnelle de la densité apporte des éléments de compréhension sur l’évolution des structures d’équilibre en prenant en compte explicitement la solvatation et les effets de la température sur les mécanismes d’interaction. Dans un premier temps, le comportement de l’ion uranyle en solution et à l’interface d’un système modèle eau / TiO2 à température ambiante a été simulé et validé par la confrontation avec des résultats expérimentaux et des calculs de DFT statiques. Dans un deuxième temps, cette approche a été employée sur ce même système, à des fins prédictives, pour étudier l’effet d’une élévation de la température. La rétention de l’ion augmente avec la température en accord avec les données expérimentales obtenues sur d’autres systèmes, et conduit également à une modification du complexe de surface. Dans un troisième temps, une étude similaire a été effectuée à l’interface eau / NiO, produit de corrosion présent dans le circuit primaire des centrales nucléaires, pour lequel peu de données expérimentales sont disponible actuellement. / This study, performed within the framework of an EDF and IPN of Orsay partnership, contributes to the studies intended to improve the understanding of the radioelement behaviour in service (nuclear power plant) and at the end of the uranium fuel cycle (deep geologic repository). The behaviour and the evolution of radioelement depend mainly on the interactions at the water / mineral interfaces, which are complex and often difficult to characterize in situ (in particular, in the PWR primary circuit). Molecular dynamic simulations based on the Density Functional Theory provide some insight to understand the evolution of the structures against the solvation and the effects of the temperature on the interaction mechanisms. At first, the behaviour of the uranyl ion at room temperature in solution and at the water / TiO2 interface, as a system model, has been studied and validated by the systematic comparisons with the experimental and static DFT calculations data. Secondly, this approach was used on the same system, in predictive purposes, to study the effect of a temperature rise. The retention of the ion increases with the temperature in agreement with the experimental data obtained on other systems, and led also to a modification of the surface complex. Finally, a similar study has been performed at the water / NiO interface, which corresponds to a corrosion product present in the primary circuit of nuclear power plants, but for which few experimental data are currently available.

Page generated in 0.0282 seconds