1 |
Geologie und Uranbergbau im Revier Schlema-AlberodaHiller, Axel, Schuppan, Werner 21 December 2011 (has links) (PDF)
Die Uran-Ganglagerstätte Schlema-Alberoda wurde, abgesehen von mehreren Altbergbauaktivitäten auf ihrem Territorium und der Nutzung ihrer radioaktiven Wässer im früheren Radiumbad Oberschlema, de facto erst nach dem Zweiten Weltkrieg entdeckt. Sie hat sich im Verlaufe ihrer Erkundung und des Abbaus als eine der größten Lagerstätten ihres Typs auf der Erde erwiesen. Die Lagerstätte Schlema-Alberoda liegt regionalgeologisch gesehen in der erzgebirgisch streichenden Lößnitz-Zwönitzer Synklinale im Kreuzungsbereich mit der NW-SO gerichteten Gera-Jáchymov-Störungszone. Bedeutsamstes tektonisches Element dieser Störungszone ist der »Rote Kamm«, der die Uranlagerstätte Schlema-Alberoda von der sich südwestlich anschließenden Wismut-Kobalt-Nickel-Silber-Uran-Lagerstätte Schneeberg trennt. In der Lößnitz-Zwönitzer Synklinale sind vorwiegend oberordovizisch-silurisch-devonische Gesteine, die so genannte »produktive« Serie, in unterordovizische Schiefer der Erzgebirgs-Nordrandzone eingefaltet. Dabei sind die Erzgänge in den Bereichen ausgebildet, in denen die Gesteine der Lößnitz-Zwönitzer Synklinale im Exokontakt des varistisch-postorogenen Auer Granitmassivs liegen. Tektonische Störungen, Spalten und Gangstrukturen durchsetzen in einer außergewöhnlichen Vielzahl die Gesteine des Lagerstättengebietes. Sie wurden teilweise mehrfach aktiviert und dienten zirkulierenden hydrothermalen Lösungen als Bewegungsbahnen bzw. ermöglichten den Absatz ihres Mineralinhaltes. Die Mineralisation der Gänge der Lagerstätte Schlema-Alberoda ist insgesamt als eine komplizierte mehrphasige, überwiegend hydrothermal gebildete Folge von Gangformationen verschiedenen Alters anzusehen. Bergbaulich von wesentlicher Bedeutung waren insbesondere die uranführenden Karbonatgänge der spätvaristischen kku-Formation sowie der postvaristischen mgu- und biconi-Formation. Dabei stellen die Quarz-Calcit-Pechblende-Gänge der kku-Formation mit einem Pechblende-Alter von ca. 275 Mio. Jahren die primären Uranerzgänge der Lagerstätte dar. Die aus umfangreichen mineralogisch-geochemischen Untersuchungen in der Lagerstätte abgeleiteten minerogenetischen Aussagen lassen bezüglich der Herkunft des Urans mehrere mögliche Quellen bzw. Modellvorstellungen zu. Der Absatz erfolgte bei stetig abklingender Temperatur, wobei die Bildung der Uranparagenesen im Bereich von 200 - 100 °C und bei sehr variierenden Druckverhältnissen vor sich ging. Teufenbezogen lag die Hauptvererzung im Intervall von -390 m bis -1125 m. Darunter nahm die Uranvererzung, die in erster Linie lithologisch kontrolliert wird, mit zurückgehender Verbreitung der »produktiven« Gesteine der Lößnitz-Zwönitzer Synklinale ab, war allerdings auch noch auf der tiefsten aufgefahrenen Sohle der Grube (-1800-m-Sohle) vorhanden. Der Abbau auf den vererzten Gangflächen erfolgte in der Regel im Firstenstoßbau. Die vor allem auf den tagesnahen Sohlen des Zentralfeldes von Oberschlema betriebene rigorose Abbauführung auf allen Gängen mit nachgewiesener Uranvererzung hatte nicht nur gravierende bergtechnische Probleme untertage, sondern auch intensive Bruch- und Senkungserscheinungen an der Oberfläche zur Folge. Insgesamt sind von 1946 bis Anfang 1991 etwa 80.000 t Uran gewonnen worden. Dabei lassen die intensiven und umfassenden Untersuchungs- und Erkundungsarbeiten die Schlussfolgerung zu, dass die Lagerstätte bis auf geringe Restvorräte abgebaut ist. Seit 1991 erfolgen die Arbeiten zur Verwahrung und Sanierung der bergbaulichen Anlagen und Flächen. Auf Grund des enormen Umfangs, der Intensität und Komplexität des getätigten Bergbaus sind diese Arbeiten sehr umfangreich, kompliziert und vielschichtig; sie werden voraussichtlich etwa 2010 abgeschlossen sein.
|
2 |
Die Gneise des ErzgebirgesTichomirowa, Marion 29 July 2009 (has links) (PDF)
Das Erzgebirge ist Teilstruktur der Fichtelgebirgs-Erzgebirgischen Antiklinalzone. Es besteht aus einem Gneiskern und einer Schieferhülle, wobei der Gneiskern flächenmäßig den größten Anteil des Erzgebirgskristallins bildet. Die Vorstellungen über den geologischen Aufbau des Erzgebirges haben sich in den letzten 10 Jahren drastisch gewandelt. Moderne PT-Untersuchungen der Gneise und Glimmerschiefer lieferten Beweise einer unterschiedlichen metamorphen Überprägung verschiedener lithologischer Einheiten des Erzgebirges und belegen dessen Deckenbau. Unterschiedliche Altersvorstellungen wurden durch neuere Datierungen erzeugt, da viele Datierungssysteme eine (oft unvollständige) Umstellung durch die metamorphe Überprägung erfuhren. Ziel dieser Arbeit war eine umfassende Charakterisierung der Gneise, die neue Erkenntnisse zu deren Genese und eine gesicherte Altersstellung der Gneise liefert. Die durchgeführten Untersuchungen erlauben die Unterscheidung von drei genetischen Gruppen der Erzgebirgsgneise (Untere "Freiberger" Graugneise, Obere Graugneise, Rotgneise), die unterschiedlichen Altersetappen zugeordnet werden können. Die Unteren Graugneise und die Rotgneise stellen Orthogneise dar ("Meta-Granitoide"), die Oberen Graugneise - Paragneise ("Meta-Grauwacken"). Desweiteren sind sogenannte Mischgneise im Erzgebirge weit verbreitet, die wahrscheinlich aus meta- bis diatektischen Migmatiten hervorgegangen sind. Anhand der Altersdatierungen der Erzgebirgsgneise konnten drei Etappen magmatischer Aktivität belegt werden (ca. 575 Ma, 540-530 Ma, 500-470 Ma), die sehr gut mit magmatischen Zeitmarken anderer saxothuringischer Einheiten (Lausitz, Elbe-Zone, Schwarzburger Sattel) korrelieren. Ein Vergleich der neoproterozoisch-frühpaläozoischen Entwicklung der saxothuringischen Einheiten mit anderen Segmenten des Böhmischen Massivs und des cadomischen Orogengürtels zeigt z.T. auffallende Ähnlichkeiten (insbesondere mit dem Mancellian Terrane des Armorikanischen Massivs) aber auch signifikante Unterschiede auf, die in der Arbeit diskutiert werden.
|
Page generated in 0.017 seconds