1 |
Die Komplexlagerstätten Tellerhäuser und HämmerleinSchuppan, Werner, Hiller, Axel 21 January 2013 (has links) (PDF)
Der Band fasst den Kenntnisstand zu den Komplexlagerstätten östlich von Pöhla zusammen. Behandelt werden die Nebengesteinsverhältnisse mit der Tektonik, die Vererzungsverhältnisse und Fragen zu den geophysikalischen Arbeiten in der Lagerstätte, zur Hydrogeologie und zur Ingenieurgeologie. Die Untersuchungen zur Entwicklung der Rohstoffbasis zeigen, dass noch beträchtliche Vorräte in der Tiefe verblieben sind, insbesondere an Zinn.
|
2 |
Geologie und Uranbergbau im Revier Schlema-AlberodaHiller, Axel, Schuppan, Werner 21 December 2011 (has links) (PDF)
Die Uran-Ganglagerstätte Schlema-Alberoda wurde, abgesehen von mehreren Altbergbauaktivitäten auf ihrem Territorium und der Nutzung ihrer radioaktiven Wässer im früheren Radiumbad Oberschlema, de facto erst nach dem Zweiten Weltkrieg entdeckt. Sie hat sich im Verlaufe ihrer Erkundung und des Abbaus als eine der größten Lagerstätten ihres Typs auf der Erde erwiesen. Die Lagerstätte Schlema-Alberoda liegt regionalgeologisch gesehen in der erzgebirgisch streichenden Lößnitz-Zwönitzer Synklinale im Kreuzungsbereich mit der NW-SO gerichteten Gera-Jáchymov-Störungszone. Bedeutsamstes tektonisches Element dieser Störungszone ist der »Rote Kamm«, der die Uranlagerstätte Schlema-Alberoda von der sich südwestlich anschließenden Wismut-Kobalt-Nickel-Silber-Uran-Lagerstätte Schneeberg trennt. In der Lößnitz-Zwönitzer Synklinale sind vorwiegend oberordovizisch-silurisch-devonische Gesteine, die so genannte »produktive« Serie, in unterordovizische Schiefer der Erzgebirgs-Nordrandzone eingefaltet. Dabei sind die Erzgänge in den Bereichen ausgebildet, in denen die Gesteine der Lößnitz-Zwönitzer Synklinale im Exokontakt des varistisch-postorogenen Auer Granitmassivs liegen. Tektonische Störungen, Spalten und Gangstrukturen durchsetzen in einer außergewöhnlichen Vielzahl die Gesteine des Lagerstättengebietes. Sie wurden teilweise mehrfach aktiviert und dienten zirkulierenden hydrothermalen Lösungen als Bewegungsbahnen bzw. ermöglichten den Absatz ihres Mineralinhaltes. Die Mineralisation der Gänge der Lagerstätte Schlema-Alberoda ist insgesamt als eine komplizierte mehrphasige, überwiegend hydrothermal gebildete Folge von Gangformationen verschiedenen Alters anzusehen. Bergbaulich von wesentlicher Bedeutung waren insbesondere die uranführenden Karbonatgänge der spätvaristischen kku-Formation sowie der postvaristischen mgu- und biconi-Formation. Dabei stellen die Quarz-Calcit-Pechblende-Gänge der kku-Formation mit einem Pechblende-Alter von ca. 275 Mio. Jahren die primären Uranerzgänge der Lagerstätte dar. Die aus umfangreichen mineralogisch-geochemischen Untersuchungen in der Lagerstätte abgeleiteten minerogenetischen Aussagen lassen bezüglich der Herkunft des Urans mehrere mögliche Quellen bzw. Modellvorstellungen zu. Der Absatz erfolgte bei stetig abklingender Temperatur, wobei die Bildung der Uranparagenesen im Bereich von 200 - 100 °C und bei sehr variierenden Druckverhältnissen vor sich ging. Teufenbezogen lag die Hauptvererzung im Intervall von -390 m bis -1125 m. Darunter nahm die Uranvererzung, die in erster Linie lithologisch kontrolliert wird, mit zurückgehender Verbreitung der »produktiven« Gesteine der Lößnitz-Zwönitzer Synklinale ab, war allerdings auch noch auf der tiefsten aufgefahrenen Sohle der Grube (-1800-m-Sohle) vorhanden. Der Abbau auf den vererzten Gangflächen erfolgte in der Regel im Firstenstoßbau. Die vor allem auf den tagesnahen Sohlen des Zentralfeldes von Oberschlema betriebene rigorose Abbauführung auf allen Gängen mit nachgewiesener Uranvererzung hatte nicht nur gravierende bergtechnische Probleme untertage, sondern auch intensive Bruch- und Senkungserscheinungen an der Oberfläche zur Folge. Insgesamt sind von 1946 bis Anfang 1991 etwa 80.000 t Uran gewonnen worden. Dabei lassen die intensiven und umfassenden Untersuchungs- und Erkundungsarbeiten die Schlussfolgerung zu, dass die Lagerstätte bis auf geringe Restvorräte abgebaut ist. Seit 1991 erfolgen die Arbeiten zur Verwahrung und Sanierung der bergbaulichen Anlagen und Flächen. Auf Grund des enormen Umfangs, der Intensität und Komplexität des getätigten Bergbaus sind diese Arbeiten sehr umfangreich, kompliziert und vielschichtig; sie werden voraussichtlich etwa 2010 abgeschlossen sein.
|
3 |
Die Uranlagerstätte KönigsteinTonndorf, Helmut 21 December 2011 (has links) (PDF)
Die bis 1990 abgebaute Uranlagerstätte Königstein ist an eine cenomane Schichtenfolge gebunden, die aufeinander folgend aus terrestrischen, lagunären und litoral-marinen Ablagerungen besteht. Die Lagerstätte ist südlich der Elbe und westlich der Biela lokalisiert. Ihre Abbaukontur in 100 bis 280 m Tiefe erstreckt sich 600 - 1000 m breit über 4700 m und streicht SSW-NNE. Ihre Urananreicherungen sind in der Tendenz monometallisch ausgebildet. In Klüftungszonen ist der schichtkonformen Dispersvererzung der Typus imprägnativer »Trümer-Flecken-Erze« aufgeprägt. Die Lagerstätte ist das jüngste und letztaufgefundene sächsische Erzobjekt und wurde im Bergwerk Königstein untertägig abgebaut. Nach einer Umstellung des Betriebes wurde das Uran seit 1984 durch chemische Gesteinsauslaugung aus dem Grubengebäude gefördert. Der Vorrat der Lagerstätte wurde zuletzt mit 27.813 t Uran bei einem Durchschnittsgehalt des Urans im Erz von 0,06 % angegeben. Seit 1990 wird nach Einstellung des Bergbaues das Bergbaugebiet saniert. Die Lagerstätte ist einem peripheren Abschnitt des Cenomans an der südöstlichen Umrahmung der Pirnaer Senke infiltrativ aufgeprägt. Die Verteilung des Urans in der Schichtenfolge wird von deren hydrologischer Durchlässigkeitsstruktur bestimmt. Die Urananreicherungen sind an feinsandige, inkohlte organische Substanz führende, Schluff- und Tonsteinlagen im Kontakt mit permeablen Sandsteinschichten gebunden. Die Erzhorizonte (ca. 1-3 m mächtig) bilden die Migrationsbarrieren für in den Untergrundwässern gelöst mitgeführtes Uran. Uran und Thorium wurden vorrangig aus dem Granit von Markersbach freigesetzt und infolge ihres unter exogenen Bedingungen unterschiedlichen Migrationsverhaltens voneinander getrennt. Das Thorium wurde im Schweb der Oberflächenwässer in die Pirnaer Senke gespült und bildete mit Elementen vergleichbaren Verhaltens, wie Zinn, Blei und Zink in der terrestrischen Wechsellagerung eine synsedimentäre weitflächige polymetallische Dispersionsanomalie. Der Großteil des Urans wanderte dagegen in Untergrundwässern gelöst in die Schichtenfolge ein. Ergebnisse der Altersbestimmung der Erze nach der Uran-Blei-Methode und geologische Zeitmarken weisen auf eine stadiale Entwicklung der Lagerstätte vom Cenoman bis in die geologische Gegenwart hin. Die erhaltenen Werte lassen auf den Beginn der Herausbildung des 3. Erzhorizontes durch exo-diagenetische Infiltration des Urans etwa gleichzeitig mit der synsedimentären Polymetallanomalie schließen. Erst später bildeten sich, z. T. auf der stofflichen Grundlage des 3. Horizontes, durch epigenetische Infiltration und unter zeitweiliger Einflußnahme des tertiären Vulkanismus, die beiden oberen Erzhorizonte heraus. Zuletzt entwickelten sich die Klüftungserze. Die jüngsten Zugänge und Umverteilungen des Urans sind an Störungen des radioaktiven Gleichgewichtes (Ra/U) feststellbar, welche für
|
4 |
Die Uranerz-Baryt-Fluorit-Lagerstätte Niederschlag bei Bärenstein und benachbarte ErzvorkommenKuschka, Ewald 24 January 2012 (has links) (PDF)
Nach einer Übersicht der regionalgeologischen und tektonischen Verhältnisse des Lagerstättenreviers werden die Bergbauaufschlüsse und lagerstättengeologischen Erkundungen sowohl der Uranerz-Baryt-Fluorit-Lagerstätte Niederschlag als auch der angrenzenden Mineralgangstrukturen dargestellt. Die Vorratssituation der Baryt-Fluorit-Lagerstätte Niederschlag wird dargelegt und es werden Angaben zur Bewetterung der Wasserhaltung des Grubengebäudes gemacht.
|
5 |
Hydrogeochemical and radiometric investigation of the uranium tailings SchneckensteinNaamoun, Taoufik 03 December 2009 (has links) (PDF)
The main goal of this thesis is the evaluation of the environmental contamination risk from the tailings materials. In order to achieve this task, hydrogeological, mineralogical, geochemical, hydrochemical, and isotope studies were conducted at the uranium tailings Schneckenstein. Four cores were taken at the tailing sites by drilling to different depths. Two borings were located in each tailing respectively. Samples were collected at an interval of 1 m. From the study, the cover layers has a coefficient of permeability of approximately 10-5 m/s, whereas for the tailings material, it ranges between 10-8 and 10-7 m/s except the last two intervals of the fourth borehole. The dry density is very low, whereas the grain density exceed 2.7 g/cm³ in almost all the materials. The total porosity is very high exceeding 30 % in almost all tailings. In addition, the infiltration rate in the tailings is low with a mean value approximately 8.8 cm/a. Muscovite and quartz dominate the mineralogy of the tailing sediments. For the analysed elements, the non residual fraction is in association with the iron and manganese oxides. Hence, the decrease of the oxygen contents in the environment will increase their solubility. Assuming an equilibrium between most of the radionuclides in the uranium chain before the ore processing and assuming that radium has not left the system e.g. as solute in water, not more than about 70 % of the total uranium content was removed during the ore processing. Also, the presence of organic matter and sulphur in the tailings material are the major factors controlling the solubility of elements in the areas. The hydrochemical model PHREEQC shows high solubility of most of elements. It also shows the change in chemical conditions between the heap materials and the tailing sediments which is characterised by a decrease of the Eh values with depth. This indicates the change of the medium to post aerobic or anaerobic conditions.
|
Page generated in 0.014 seconds