• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspects of Non-Perturbative Renormalization

Nandori, Istvan 10 September 2002 (has links) (PDF)
The goal of this Thesis is to give a presentation of some key issues regarding the non-perturbative renormalization of the periodic scalar field theories. As an example of the non-perturbative methods, we use the differential renormalization group approach, particularly the Wegner-Houghton and the Polchinski renormalization group equations, in order to investigate the renormalization of a one-component periodic scalar field theory. The Wegner-Houghton equation provides a resummation of the loop-expansion, and the Polchinski equation is based on the resummation of the perturbation series. Therefore, these equations are exact in the sense that they contain all quantum corrections. In the framework of these renormalization group equations, field theories with periodic self interaction can be considered without violating the essential symmetry of the model: the periodicity. Both methods - the Wegner-Houghton and the Polchinski approaches - are inspired by Wilson's blocking construction in momentum space: the Wegner-Houghton method uses a sharp momentum cut-off and thus cannot be applied directly to non-constant fields (contradicts with the "derivative expansion"); the Polchinski method is based on a smooth cut-off and thus gives rise naturally to a "derivative expansion" for varying fields. However, the shape of the cut-off function (the "scheme") is not fixed a priori within Polchinski's ansatz. In this thesis, we compare the Wegner--Houghton and the Polchinski equation; we demonstrate the consistency of both methods for near-constant fields in the linearized level and obtain constraints on the regulator function that enters into Polchinski's equation. Analytic and numerical results are presented which illustrate the renormalization group flow for both methods. We also briefly discuss the relation of the momentum-space methods to real-space renormalization group approaches. For the two-dimensional Coulomb gas (which is investigated by a real-space renormalization group method using the dilute-gas approximation), we provide a systematic method for obtaining higher-order corrections to the dilute gas result.
2

Chaotic transport and trapping close to regular structures in 4D symplectic maps

Lange, Steffen 18 August 2016 (has links) (PDF)
Higher-dimensional Hamiltonian systems usually exhibit a mixed phase space in which regular and chaotic motion coexist. While regular trajectories are confined to regular tori, chaotic trajectories can be transported through a web of so called resonance channels which disrupt the regular structures. The focus of this thesis are time-discrete 4D symplectic maps which represent the lowest dimensional system for which the chaotic transport can circumvent regular tori. While the dynamics of 2D maps are well established, many fundamental questions are open for maps of dimension four and higher due to this property. In particular, the mechanism of the power-law trapping is unknown for these maps. In this thesis, the organization and hierarchy of the regular structures of 4D maps is uncovered and the slow chaotic transport close to these structures is examined. Specifically, this transport is shown to be organized by a set of overlapping resonance channels. The transport across these channels is found to be governed by partial transport barriers. For the transport along a channel a stochastic process including a drift is conjectured. Based on each of these two types of chaotic transport a possible mechanism for the power-law trapping in higher-dimensional systems is proposed.
3

Bifurcations of families of 1-tori in 4D symplectic maps

Onken, Franziska 14 August 2015 (has links) (PDF)
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. / Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden.

Page generated in 0.0248 seconds