Spelling suggestions: "subject:"bifurkationen"" "subject:"bifurkationer""
1 |
Bifurcations of families of 1-tori in 4D symplectic mapsOnken, Franziska 14 August 2015 (has links) (PDF)
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. / Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden.
|
2 |
Non-smooth saddle-node bifurcations I: existence of an SNAFuhrmann, Gabriel 03 June 2020 (has links)
We study one-parameter families of quasi-periodically forced monotone interval maps and provide sufficient conditions for the existence of a parameter at which the respective system possesses a non-uniformly hyperbolic attractor. This is equivalent to the existence of a sink-source orbit, that is, an orbit with positive Lyapunov exponent both forwards and backwards in time. The attractor itself is a non-continuous invariant graph with negative Lyapunov exponent, often referred to as ‘SNA’. In contrast to former results in this direction, our conditions are C² -open in the fibre maps. By applying a general result about saddle-node bifurcations in skew-products, we obtain a conclusion on the occurrence of non-smooth bifurcations in the respective families. Explicit examples show the applicability of the derived statements.
|
3 |
Bifurcations of families of 1-tori in 4D symplectic mapsOnken, Franziska 14 August 2015 (has links)
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. / Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden.
|
4 |
Non-smooth saddle-node bifurcations II: Dimensions of strange attractorsFuhrmann, G., Gröger, M., Jäger, T. 03 June 2020 (has links)
We study the geometric and topological properties of strange non-chaotic attractors created in non-smooth saddle-node bifurcations of quasiperiodically forced interval maps. By interpreting the attractors as limit objects of the iterates of a continuous curve and controlling the geometry of the latter, we determine their Hausdorff and box-counting dimension and show that these take distinct values. Moreover, the same approach allows us to describe the topological structure of the attractors and to prove their minimality.
|
Page generated in 0.0901 seconds