1 |
Investigation of Planar Channeling Radiation on Diamond and Quartz Crystals at Electron Energies between 14 and 34 MeV and Probing the Influence of Ultrasonic Waves on Channeling RadiationAzadegan, Behnam 15 January 2008 (has links) (PDF)
The first measurements of CR at the Radiation source ELBE of the Forschungszentrum Dresden-Rossendorf have been performed in the fall of 2003, where the most important attempt for an application of CR in radiobiological research was the optimization of its yield and spectral line width as well. Since diamond single crystals have been found to probably be the most suitable ones for an intense CR production because of their outstanding properties to withstand rather high average electron currents, a first measurement series was directed to the studying of the dependence of the yield of planar CR on the thickness of the diamond crystal.
|
2 |
Direct dynamical tunneling in systems with a mixed phase spaceSchilling, Lars 19 July 2007 (has links) (PDF)
Tunneling in 1D describes the effect that quantum particles can penetrate a classically insurmountable potential energy barrier. The extension to classically forbidden transitions in phase space generalizes the tunneling concept. A typical 1D Hamiltonian system has a mixed phase space. It contains regions of regular and chaotic dynamics, the so-called regular islands and the chaotic sea. These different phase space components are classically separated by dynamically generated barriers. Quantum mechanically they are, however, connected by dynamical tunneling. We perform a semiclassical quantization of almost resonance-free regular islands and transporting island chains of quantum maps. This yields so-called quasimodes, which are used for the investigation of direct dynamical tunneling from an almost resonance-free regular island to the chaotic sea. We derive a formula which allows for the determination of dynamical tunneling rates. Good agreement between this analytical prediction and numerical results is found over several orders of magnitude for two example systems. / Der 1D Tunneleffekt bezeichnet das Durchdringen einer klassisch nicht überwindbaren potentiellen Energiebarriere durch Quantenteilchen. Eine Verallgemeinerung des Tunnelbegriffs ist die Erweiterung auf jegliche Art von klassisch verbotenen Übergangsprozessen im Phasenraum. Der Phasenraum eines typischen 1D Hamiltonschen Systems ist gemischt. Er besteht aus Bereichen regulärer und chaotischer Dynamik, den sogenannten regulären Inseln und der chaotischen See. Während diese verschiedenen Phasenraumbereiche klassisch durch dynamisch generierte Barrieren voneinander getrennt sind, existiert quantenmechanisch jedoch eine Verknüpfung durch den dynamischen Tunnelprozess. In dieser Arbeit wird eine semiklassische Quantisierung von praktisch resonanz-freien regulären Inseln und transportierenden Inselketten von Quantenabbildungen durchgeführt. Die daraus folgenden sogenannten Quasimoden werden für die Untersuchung des direkten dynamischen Tunnelns aus einer praktisch resonanz-freien regulären Insel in die chaotische See verwendet, was auf eine Tunnelraten vorhersagende Formel führt. Ihre anschlie?ßende Anwendung auf zwei Modellsysteme zeigt eine gute Übereinstimmung zwischen Numerik und analytischer Vorhersage über viele Größenordnungen.
|
3 |
Tunneling spectroscopy of highly ordered organic thin films / Tunnelspektroskopie von hochgeordneten organischen DünnschichtenTörker, Michael 23 May 2003 (has links) (PDF)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
|
4 |
Dynamical Tunneling in Systems with a Mixed Phase SpaceLöck, Steffen 06 May 2010 (has links) (PDF)
Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible.
Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. / Der Tunnelprozess ist einer der bedeutensten Effekte in der Quantenmechanik. Während das Tunneln in eindimensionalen integrablen Systemen gut verstanden ist, gestaltet sich dessen Beschreibung für Systeme mit gemischtem Phasenraum weitaus schwieriger. Solche Systeme besitzen Gebiete regulärer und chaotischer Bewegung, die klassisch getrennt sind, aber quantenmechanisch durch den Prozess des dynamischen Tunnelns gekoppelt werden. In dieser Arbeit wird eine theoretische Vorhersage für dynamische Tunnelraten abgeleitet, die den Zerfall von Zuständen, die im regulären Gebiet lokalisiert sind, in die sogenannte chaotische See beschreibt. Dazu wird ein fiktives integrables System konstruiert, das im regulären Bereich eine nahezu gleiche Dynamik aufweist und diese Dynamik in das chaotische Gebiet fortsetzt. Die Theorie zeigt eine ausgezeichnete Übereinstimmung mit numerischen Daten für gekickte Systeme, Billards und optische Mikrokavitäten, falls nichtlineare Resonanzketten vernachlässigbar sind.
Semiklassisch jedoch bestimmen diese nichtlinearen Resonanzketten den Tunnelprozess. Daher kombinieren wir unseren Zugang mit einer verbesserten Theorie des Resonanz-unterstützten Tunnelns und erhalten eine Vorhersage,die vom Quanten- bis in den semiklassischen Bereich gültig ist. Ihre Resultate zeigen eine Genauigkeit, die verglichen mit früheren Theorien um mehrere Größenordnungen verbessert wurde.
|
Page generated in 0.022 seconds