21 |
Polymerpartikel für biomedizinische Anwendungen / Polymeric particles for biomedical applicationsHäntzschel, Nadine 23 April 2008 (has links) (PDF)
Gegenstand dieser Arbeit ist die Herstellung funktioneller Polymerpartikel und deren Nutzung für biomedizinische Applikationen. Die Anwendungsgebiete der resultierenden Hybridmaterialien reichen vom Einsatz als Kontrastmittel in bildgebenden Verfahren der medizinischen Diagnostik über die Verwendung als Antimikrobium bis hin zum Einsatz als „Werkzeug“ zur Zellisolierung und aktivierung. Dazu wurden kompakte Latexpartikel und sensitive, poröse Mikrogelpartikel mittels emulgatorfreier Heterophasenpolymerisation synthetisiert. Als funktionelles Monomer wurde Glycidylmethacrylat verwendet, über dessen reaktive Epoxygruppen anschließend weitere Moleküle angebunden werden können. Die Funktionalisierung der Polymerpartikel erfolgte einerseits mit anorganischen Nanopartikeln (dotierte Lanthanfluorid-Nanopartikel, Gold- und Silbernanopartikel) und andererseits mit Biomolekülen wie Nukleotiden und Antikörpern. Einige Verwendungsgebiete, wie die Stimulierung von Memory-T-Zellen mit Antikörper-Polymer-Konjugaten oder der Einsatz der Silberkomposite aufgrund ihrer antimikrobiellen Wirkung, wurden näher untersucht. / The aim of this work was the synthesis of functional polymeric particles and their use for biomedical purposes. The application areas of the resulting hybrid materials range from contrast agents in medical diagnostics and usage due to antimicrobial properties to “tools” for cell isolation and activation. Compact core-shell particles and porous microgel particles were prepared by surfactant-free heterophase polymerization in water. All particles contain glycidyl methacrylate whose epoxy groups are capable to bind other molecules covalently. On the one hand, polymeric particles were functionalized with inorganic nanoparticles (doped lanthanum fluoride nanoparticles, gold and silver nanopariticles) and on the other hand with biomolecules such as nucleotides and antibodies. Selected application fields like the stimulation of memory T-cells with polymer-antibody-conjugates or the use of the silver composites due to their antimicrobial activity were investigated in detail.
|
22 |
Polypyrrole-containing Composite Particles: Preparation, Characterization and Application / Polypyrrol-Komposit-Teilchen: Synthese, Charakterisierung und AnwendungLu, Yan 23 January 2005 (has links) (PDF)
This research is focused on preparation of polypyrrole (PPy) composite particles by using socalled template oxidative polymerization method. As a template, water-soluble polymers, polymeric microgels, latex particles or bulk gels can be used. The morphology and properties of the composite particles can be controlled effectively by the proper use of the template. By choosing the dopant anion or oxidation agent it is possible to vary the conductivity of the polymer. In the case when uncrosslinked PVME was used as stabilizer, core-type polypyrrole spherical particles in the range of 50-100 nm were formed in both aqueous ethanol and water. Results of the elementary analysis, IR spectroscopy confirmed that the anionic salts can be incorporated in the PPy particles and play as the dopants. The presence of dopants in polypyrrole enhances the conductivity, especially in the case of sodium benzoate the conductivity of the final product has been improved by 3 orders. Polymeric microgels were also applied as the templates for polypyrrole deposition. When crosslinked PVME microgels were used in the oxidation polymerization of pyrrole, large PPy fibrils (appr. 400nm) were formed. Needle-like particles were formed due to the porous structure of microgels, which play a template role in the pyrrole polymerization process. When poly(VCL/AAEM) microgels were used as a template for oxidative polymerization of pyrrole, "raspberry-like" composite particles will be formed with PPy domains located in swollen hydropholic particle shell. Obtained stable composite microgels show similar thermal sensitivity as poly(VCL/AAEM) particles with fully reversible collapse-swelling properties. Increase of PPy content in composite particles increases conductivity of the composite material. The conductivity of composite particles prepared in water was much higher than that of prepared in water : ethanol mixtures. Furthermore, monodisperse PS-PEGMA particles, which were prepared in water medium by polymerization with sodium peroxydisulfate have been used as a template for deposition of polypyrrole (PPy). Obtained composite particles possess core-shell morphology where shell is composed out of small PPy nano-domains. The shell thickness can be varied by changing PPy load, controlling the overall template surface area in the system, and by influencing the pyrrole polymerization kinetics in presence of different oxidants. The last possibility provides also incorporation of different anions into polypyrrole shell. The stability of composite particles decreases gradually if the deposited PPy amount increases. It has been established that obtained particles are intrinsically coloured and the colour can be changed by the PS-PEGMA core size. Conductivity measurement shows that PS/PEGMA/PPy composite particles prepared by using phosphomolybdate as the oxidant are much more conductive than the particles prepared by the other two oxidants. The conductivity increases with the increase of PPy load in the system. Overall, the proper design of the template should give a possibility to control effectively the morphology, particle size and provide sufficient stability to the composite particles. Different morphologies, such as spherical, core-shell, raspberry and needle-like, with different particle size are expected to be available in different cases. By choosing the dopant anion or oxidation agent it is possible to vary the conductivity of the polymer. The stable water-based dispersions are expected to be used as additives for paint formulations, in electrorheology, microelectronic, ion-separation or disease diagnostics.
|
23 |
Synthesis and Characterization of Pyrrole Based Adhesion Promoter Systems on Oxide SubstratesCai, Xuediao 24 January 2005 (has links) (PDF)
For grafting polypyrrole on oxidized surfaces, 3-substituted pyrrole alkyl phosphonic acids, 11-(pyrrol-3-yl undecyl) trimethoxysilanes and 1-substituted pyrrole alkyl organosilanes with different chain length were designed and successfully synthesized as adhesion promoters. These new derivatives were studied for their adsorption behavior on oxide substrates and chemical or electrochemical deposition of polypyrrole over modified oxide surface or electrodes. Several analytical techniques such as contact angle measurement, surface plasmon resonance spectroscopy (SPR), UV-VIS Spectroscopy, grazing incident FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to characterize the adsorbed layers on different substrates. Contact angle measurement and ellipsometry data showed that high concentrations in apolar hydrocarbon solvent and long reaction times are sufficient to form tightly packed monolayer of 1-substituted pyrrole alkyl monochlorosilanes (PMCS) on substrates. Adsorption kinetics were studied by SPR and showed that the adsorption took place within a few seconds, then continuously increased and reached a plateau. The orientation of these synthesized monomers is investigated to be well-suited for use as adhesion promoter. CV-measurements showed that 3-substrated pyrrole derivatives had lower oxidation potential, whereas 1-substituted pyrrole derivatives had higher oxidation potential compared with pyrrole. Surface deposition of polypyrrole on the adhesion promoter modified (silane-modified and phosphonic acid-modified) substrates by chemical and electrochemical polymerization were investigated. PPy films formed on the modified surfaces by surface chemical polymerization showed a better adhesion compared to those on the unmodified surfaces. The morphology of PPy films was influenced by the alkyl chain length of the adhesion promoter and the deposition condition, such as choice of oxidant and solvent. The thickness of the resulting PPy films were controlled by the polymerization conditions, such as choice of solvent, deposition time, pyrrole to oxidant ratio and monomer concentration. The thickness of the deposited PPy film was estimated in the range of 10-400 nm by AFM and ellipsometry. The electrical properties were studied by current-voltage (j-V) measurement. Temperature dependence of j-V characteristics of Si/SiO2/PPy/PMCS-16/Al films revealed that the current increases with temperature, the film shows a typical semiconductor behavior. The use of these adhesion promoters modified electrode for electrochemical polymerization resulted in adhesive polypyrrole films.Also the 3-substituted pyrrole phosphonic acids were found to be homo-and co-polymerizable (with pyrrole) under chemical methods. TGA showed that homopolymers are less stable than polypyrrole due to the 3-substitution. he homopolymer of 3-substituted phosphonic acid derivatives of pyrrole is soluble. Films coated from the MeOH solution of homopolymer could be successfully used as humidity sensors. It is observed that the resistivity of the 3-substituted homopolypyrrole sensors increases and capacitance decreases during exposure to humid air. The polypyrrole films obtained by surface chemical polymerization was also used as humidity sensors.
|
24 |
Synthese und Charakterisierung von sensitiven vernetzungsfähigen Blockcopolymeren mittels RAFTSeifert, Denis 17 October 2005 (has links) (PDF)
In vorangegangenen Arbeiten im eigenen Arbeitskreis wurden sensitive Hydrogelpartikel im mm- und μm-Bereich synthetisiert. Die Reaktion dieser Gele auf Änderung des einwirkenden Stimulus war jedoch nicht schnell genug für die gewünschten Anwendungen in Mikroventilen. Die verwendeten Polymere waren statistische Copolymere aus einem Chromophor (DMIAAm) und einem sensitiven Monomer (NIPAAm) und wiesen daher sehr breite Molmassenverteilungen auf. Mit Hilfe des Chromophores wurde es möglich, Hydrogele im Submikrometerbereich zu synthetisieren. Bei der Vernetzung dieser Polymere mit UVBestrahlung musste immer ein Tensid (SDS) zugesetzt werden, um die Bildung kleiner Aggregate zu unterstützen und gleichzeitig die Bildung großer zu unterdrücken. Ein solches Tensid kann die Anwendung dieser Hydrogele in bestimmten Bereichen, wie in der Medizin, verhindern. Es sollen daher tensidfrei Hydrogele synthetisiert werden. Für die Vernetzung sollte auf die photochemische Variante mit DMIAAm als Chromophor zurückgegriffen werden. Als Ausgangspolymere wären Di- bzw. Triblockcopolymere denkbar, die in wässriger Lösung zu einer Mizellbildung neigen. Aus den oben genannten Problemen ergab sich die folgende Zielstellung für die Arbeit. Es sollten sensitive Hydrogelpartikel erzeugt werden, die in der Lage sind, schnell auf eine Änderung der Temperatur zu reagieren. Eine kurze Reaktionszeit ist nur von Gelpartikeln mit kleinen Dimensionen im nm-Bereich zu erwarten. Weiterhin sollen diese Partikel mit einer Hülle umgeben werden, die für eine Stabilisierung sorgt und die Bildung größerer Aggregate unterbindet. Die Hülle muss so beschaffen sein, dass die Volumenänderung des sensitiven Blocks nicht beeinflusst wird. In dieser Dissertation wurde die kontrollierte radikalische Polymerisation von Acrylaten und Acrylamiden untersucht. Als Methode kam die Reversible-Addition-Fragmentation-chain-Transfer (RAFT) Polymerisation zum Einsatz. Die RAFT wurde gewählt, weil diese im Gegensatz zur ATRP metallionenfrei verläuft und die NMRP nicht für Acrylate geeignet ist. Bei den RAFT-Polymerisationen der verschiedenen Monomere wurden vier unterschiedliche Kettenüberträger verwendet (Schema 33) und folgende Ergebnisse erhalten. Als Lösungsmittel kam 1,4-Dioxan in den Polymerisationen zum Einsatz.
|
25 |
Hyperbranched polyesters for polyurethane coatings: their preparation, structure and crosslinking with polyisocyanates / Hyperverzweigte Polyester für Polyurethan-Beschichtungen: Ihre Darstellung, Struktur und Vernetzung mit PolyisocyanatenPavlova, Ewa 26 February 2007 (has links) (PDF)
In this work, hyperbranched aromatic polyesters-polyphenols based on 4,4-bis(4’ hydroxy¬phenyl)pentanoic acid (BHPPA) were prepared and, according to the authors knowledge, for the first time tested as precursors for polyurethane bulk resins and coatings. Comparison of poly-BHPPA with competing products The materials prepared in this work show better properties than their aliphatic polyester-polyol analoga based on 2,2-bis-(hydroxymethyl)propanoic acid (BHMPA). Especially, the solubility of poly-BHPPA in organic solvents is better and poly-BHPPAs also do not tend to microphase separation during their reaction with isocyanates, in contrast to poly-BHMPAs. The poly-BHPPA and the polyurethane networks made from them display higher Tg values than analogous poly- BHMPA compounds. Because of the high Tg of the reacting and final systems, curing must occur at elevated temperatures (90°C) in order to avoid undercure. The lower reactivity of phenolic OH groups prevents the reaction from being too fast at that temperature. A drawback of the polyurethanes based on the aromatic polyesters-polyols prepared is the lower thermal stability of their urethane bonds, if compared to aliphatic urethanes. An interesting possibility for future investigations would be the modification of the BHPPA monomer in order to change the OH functionality from phenolic to aliphatic OH, e.g. by replacement of the phenolic OH by hydroxymethyl or hydroxyethyl groups (requires a strong modification of the monomer synthesis) or simpler by reacting the phenolic OH of BHPPA with a suitable reagent like oxirane, which would lead to groups like O-CH2-CH2-OH in the place of the phenolic OH. Such a BHPPA modification should in turn yield modified “poly-BHPPA” polycondensates, which would combine the advantages of poly-BHPPA with those of aliphatic OH precursors of polyurethanes. Poly-BHPPA synthesis Hyperbranched polymers of the 4,4-bis-(4’-hydroxyphenyl)pentanoic acid (BHPPA) were synthesized successfully by the catalyzed (by dibutyltin diacetate) polycondensation of BHPPA. The products obtained were oligomers with number average molecular weight ranging from 1800 to 3400 g/mol (polymerization degree of ca. 6 to 12), displaying a first moment of functionality in the range 7 to 14. Such products were good OH precursors for the preparation of polyurethane coatings, because higher functional polymers would gel at low conversions. The analysis of the functional groups (determination of acid and hydroxyl numbers) and the 1H-NMR and the 13C-NMR spectroscopy were found to be good methods for the determination of molecular weights. The polydispersity of the poly-BHPPA products was in the range 3.5 to 6. Their degree of branching was found to be in the range 0.36 to 0.47. Poly-BHPPA containing aliphatic polyols as core monomers were also prepared successfully. Difunctional and trifunctional core monomers usually reached a full conversion of their OH groups, while the tetra- and hexafunctional core monomers were converted only to 89%. In all these products however, a considerable amount, usually even a majority, of the polymer molecules were core free. The poly-BHPPA products prepared displayed relatively high glass transition temperatures, in the range of 84°C to 114°C, obviously due to interactions between the phenol groups and to hydrogen bridging. The thermal stability of these products was also high, with decomposition occurring near 350°C (at a heating rate of 10°C / min) Kinetics investigations of the poly-BHPPA reactivity towards isocyanates The poly-BHPPA are polyphenols and were expectedly found to react significantly slower with isocyanates than aliphatic alcohols. The reactivity of poly BHPPA was also found to be somewhat lower than that of the monofunctional, low molar-mass 4 ethylphenol. Hexamethylene diisocyanate trimer, Desmodur N3300, was found to be more reactive than hexamethylene diisocyanate (HDI) or butyl isocyanate in all experiments, possibly due to a substitution effect. The substitution effect can be explained by a change of microenvironment caused by conversion of isocyanate group and OH group into urethane groups. The reactions of low-molecular-mass alcohols or phenols with low molecular weight isocyanates followed well the 2nd order kinetics, while the reactions of poly-BHPPA with isocyanates show deviations from ideal 2nd order kinetics at higher conversions. All the kinetics experiments were carried out under catalysis by dibutyltin dilaurate. This catalyst inhibits the undesired reaction of isocyanate groups with moisture. It was also found that the catalysis was necessary to reach reasonable curing times for poly-BHPPA based polyurethane networks. The uncatalyzed systems reacted extremely slowly. Preparation of polyurethane networks from poly-BHPPA The poly BHPPA products prepared were used successfully as OH functional precursors of polyurethane networks. The networks prepared contained only very low sol fractions. Acetone and also ethylene diglycol dimethylether (diglyme) were found to be good swelling solvents for the networks prepared, while methyl propyl ketone was a much poorer solvent and aromatic compounds like toluene or xylene practically did not swell the poly BHPPA based polyurethanes. The networks prepared contain a relatively high amount of cyclic bonds, 40 to 50% in the finally cured state, which is an expected result for systems with precursors of high functionality and with small distances between the functional groups. The temperature of glass transition (Tg) of the networks prepared (ranging from 68°C to 126°C) depends of the poly BHPPA precursor used: it increases with increasing molecular mass and with increasing core functionality. The choice of the isocyanate crosslinker also influences Tg: the networks made from HDI show higher Tg values, than networks made from the same poly BHPPA but crosslinked with Desmodur N3300 (Tri HDI). The urethane bonds in the networks prepared start to decompose near 140°C. The easier degradation of PU with aromatic urethane bonds is a disadvantage in comparison with aliphatic polyurethanes, whose decomposition starts at 200°C. The surfaces of polyurethane coatings prepared are smooth, displaying a roughness of ca. 20-25 nm, and relatively hydrophilic: the contact angle with water was found to be near 80°. The prepared networks are also relatively hard, possessing the Shore D hardness of 70.
|
26 |
Hyperbranched Aromatic Polyesters and Their Application in Blends of Linear PolyamidesFan, Zhirong 22 September 2009 (has links) (PDF)
In the last two decades, hyperbranched (hb) polymers have drawn much attention and obtained intensive research activities both from industry and academia. They are known to have unique and interesting properties which derive from their three dimensional structure and the large number of functional groups. These structural characteristics provide high possibilities for controlling functional group interactions and modifications of other polymers in blends and therefore, they are expected to result in novel materials with desired properties. Furthermore, the easy synthetic accessibility of hb polymers by one-pot synthesis is advantageous as well and allows easy scale-up of laboratory reactions. Having the characteristics as mentioned above, hb polymers are considered good candidates for blend components or melt processing modifiers. In fact, hb polymers have already been used as blend components or additives aiming for different effects. In many cases, reduced viscosity and formation of miscible blends were observed by modification of a linear matrix polymer with hb polymers. More information will be introduced in the following theoretical section. In this work two hb polyester systems based on AB2 and A2+B3 approaches were synthesized and studied. Their possible applications as additives in the blends of linear polyamides were investigated.
|
27 |
Ni(II)-NTA-modifizierte dendritische Glycopolymere als Trägersysteme für Antigen-Peptide in Zell-basierter ImmuntherapieHauptmann, Nicole 25 November 2013 (has links) (PDF)
Dendritische Polymere werden im zunehmenden Maße als nicht-virale Vektoren für virus- oder tumor-assoziierte Antigen-Peptide zur Entwicklung neuer immuntherapeutischer Strategien eingesetzt. Diese beruhen auf der Verwendung von dendritischen Zellen (DCs), welche Schlüsselzellen bei der Induktion und Aufrechterhaltung einer T-Zell-basierten Immunantwort darstellen. Im Rahmen dieser Arbeit wurden Nitrilotriessigsäure-funktionalisierte dendritische Glycopolymere (NTA-DG) für den Transport von Antigen-Peptiden in DCs etabliert. Die Ni(II)-NTA-DGs waren durch definierte Komplexierungs- und Freisetzungseigenschaften charakterisiert. So wurde das Antigen-Peptid bei einem pH-Wert unter 6 vom polymeren Träger freigesetzt. Die gebildeten Polyplexe, zwischen Ni(II)-NTA-DG und dem Antigen-Peptid, bewirkten eine Erhöhung der Antigen-Peptid-Aufnahme in immaturen DCs (iDCs). Dieses war nach der Endozytose im frühen endosomalen und lysosomalen Kompartiment von iDCs lokalisiert. Somit kann das Antigen-Peptid am MHC Klasse II-Molekül im lysosomalen Kompartiment ohne sterische Hinderungen durch die Polymeroberfläche binden. Die Polyplexe bewirkten eine Aktivierung der iDCs durch Aufregulation der kostimulatorischen Moleküle CD86 und CD80 sowie der pro-inflammatorischen Zytokine IL-6 und IL-8. Weiterhin wurde die Migrationsfähigkeit und das pro-inflammatorische Potential der Antigen-Peptid enthaltenen maturen DCs (mDCs) aufrechterhalten. Somit stellen Ni(II)-NTA-DGs ein vielversprechendes polymeres Trägersystem für Antigen-Peptide dar.
|
28 |
Protein-Glycopolymer Biohybrid Structures Based on Molecular Recognition Processes for Biomedical Applications / Protein-Glykopolymer Biohybridstrukturen auf der Basis molekularer Erkennungsprozesse für biomedizinische AnwendungenEnnen, Franka 13 January 2015 (has links) (PDF)
The design of versatile biohybrid nanosized materials has revealed itself as a promising avenue towards biomedical applications in today´s life sciences. In this regard the combination of components of synthetic and natural origin facilitates an applicability which is supposed to be far beyond the sum of their single components. These biohybrid structures (BHS) can be built by a huge variety of building blocks including solid or soft nanoparticles, peptides/proteins, polynucleotides or low molecular weight drugs. Along with the latter the attachment of biologically active entities or imaging moieties, e. g. enzymes, fluorescence markers or targeting motifs display thereby a key step towards the development of carrier systems for drug delivery purposes.
Among the soft nanoparticles especially dendritic polymers such as perfectly branched dendrimers or hyperbranched polymers are considered as ideal building blocks, since they allow an easy tailoring of crucial properties such as solubility, biocompatibility or bioactivity by means of surface functionalization. Especially in the field of targeted drug delivery the crucial role of sizes and size distributions of carriers has been highlighted recently, since it critically influences important factors such as circulation time or biodistribution within the body.
The ability of avidin to form high molecular weight associates with biotinylated macromolecules as well as its inherent properties makes it a suitable candidate for passive and active targeting in combination with biotinylated (bio-)polymers. Furthermore, along with the covalent attachment of bioactive moieties, non-covalent attachment is a frequently used approach, because it is assumed to only require stoichiometric mixing. In context of the latter molecular recognition processes such as the avidin-biotin, β-cyclodextrin-adamantane or Ni(II)-NTA-histidine-tag interactions have shown to be fruitful strategies for the attachment of bioactive entities.
The overall aim of this work was to fabricate BHS based on dendritic glycopolymers with varied sizes in the nano- and micrometer range as models for biomedical applications e. g. carriers for drug delivery. Therefore the molecular recognition of avidin with biotin derivatives and β-cyclodextrin with adamantane derivatives was utilized in order to tailor final sizes, functionality or catalytic activity of those BHS.
|
29 |
Netzwerkheterogenität und kooperative Bewegung: Untersuchung von Netzwerken unterschiedlicher Vernetzungsmechanismen mit dynamischer LichtstreuungEckert, Franziska 02 February 2009 (has links) (PDF)
Die Struktur von Netzwerken wird durch die Wahl der Netzwerkaufbaureaktion, der Ausgangsmoleküle und der Reaktionsbedingungen bestimmt. Es ist schwierig, wenn nicht gar unmöglich, geeignete Reaktionsparameter zu finden, die zum Aufbau homogener Netzwerkstrukturen führen. Die unterschiedliche Reaktivität der Ausgangsmoleküle resultiert in Unregelmäßigkeiten innerhalb der Netzwerkstruktur, z. B. durch inhomogene Verteilung der Vernetzungspunkte. Als Maß für die Heterogenität eines Netzwerkes kann die Streuintensität herangezogen werden. Diese besteht bei Netzwerken aus einem dynamischen und einem statischen Teil. In stark heterogenen Netzwerken überwiegt die statische Komponente der Streuintensität, die dynamischen Beiträge sind gering. Bei homogeneren Strukturen überwiegt die dynamische Komponente. Deshalb kann der Beitrag dynamischer Konzentrationsfluktuationen zur Gesamtstreuintensität als Maß für den Grad der Heterogenität dienen. Die meisten Netzwerke werden durch radikalische Copolymerisation von Monomeren und Vernetzern synthetisiert. Aufgrund der unterschiedlichen Reaktivitäten sind die entstehenden Strukturen stark heterogen. Die Verwendung anderer Mechanismen zum Netzwerkaufbau bietet eine Möglichkeit, homogenere Netzwerke zu erhalten. Vor allem die Vernetzung polymerer Ketten, ausgehend von einer homogenen halbverdünnten Lösung, ist eine strategisch interessante Variante. Ziel dieser Arbeit war die systematische Untersuchung des Einflusses der chemischen Zusammensetzung, der Netzwerkaufbaureaktion, der Polymerkonzentration und der Netzwerkdichte auf die thermodynamischen Eigenschaften (kooperative Diffusionskoeffizienten Dcoop) und die Netzwerkstruktur (Heterogenität) unterschiedlicher Netzwerksysteme. Am Beispiel von Polyacrylsäure (PAS) Netzwerken (radikalische Vernetzung) und Poly(styrol-co-maleinsäureanhydrid) (PScoMSA) Netzwerken (Vernetzung polymerer Lösungen) wurden zwei Netzwerksysteme untersucht, die sich hinsichtlich ihrer Aufbaureaktion unterscheiden. Mittels klassischer Netzwerkanalyse können diese Systeme sehr gut charakterisiert werden. Die kooperativen Diffusionskoeffizienten sowie die Netzwerkheterogenität wurden durch dynamische Lichtstreuung bestimmt.
|
30 |
Complexation Properties of Maltosylated Hyperbranched Poly(ethylene imine)s in Solution and in Functional HydrogelsPolikarpov, Nikita 24 January 2013 (has links) (PDF)
Hyperbranched poly(ethylene imine) with Mw 5,000 and 25,000 Da and different degrees of substitution with maltose (PEI-Mal) was firstly described by Appelhans et al. Its biocompatibility and the potential to complex anionic molecules was demonstrated previously. In this study, the characterisation of host-guest interactions of PEI-Mal with various anionic water-soluble guest molecules with aromatic moieties in the structure (adenosine triphosphate, rose bengal, and acid red 26) in solution was provided. Also, a multicomponent drug@PEI-Mal@hydrogel system was achieved.
|
Page generated in 0.0196 seconds