• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Einfluss der Entkeimung von Lupinensaatgut und Lupinenproteinisolaten auf ausgewählte ernährungsphysiologische, sensorische und technofunktionelle Eigenschaften

Melde, Denise 09 October 2017 (has links) (PDF)
Nach den Ergebnissen der zweiten Nationalen Verzehrsstudie sind in Deutschland bereits 66 % der Männer und 51 % der Frauen übergewichtig (BMI > 25) oder adipös (BMI > 30) [BMELV, 2008]. Bisher auf dem Markt befindliche „Light-Lebensmittel“ mit Fettaustausch- bzw. Fettersatzstoffen weisen jedoch häufig sensorische Mängel auf. Im Kooperationsprojekt „Pflanzliche Fettaustauschstoffe aus sphärischen Proteinmizellen“ (Universität Leipzig: Institut für Lebensmittelhygiene; Freising: Fraunhofer IVV) wurde ein Lupinenproteinisolat entwickelt, welches micellare Strukturen mit hydrophober Oberfläche ausbilden kann und sich aufgrund seiner fettähnlichen Eigenschaften als neuer proteinbasierter Fettaustauschstoff in Lebensmitteln eignet. Aufgrund der geringen mikrobiologischen Stabilität und einer hohen Belastung mit sporenbildenden Bakterien, z. T. Bacillus cereus, waren jedoch Maßnahmen zur Entkeimung der Rohstoffe sowie des Proteinisolats notwendig. Die Arbeit stellt diese Maßnahmen und deren Einfluss auf die mikrobiologische Beschaffenheit sowie sensorische, technofunktionelle und ausgewählte ernährungsphysiologische Eigenschaften dar. In der vorliegenden Arbeit wurde eine physikalische Methode der Saatgutentkeimung etabliert (130 °C/60 min), welche die mikrobielle Stabilisierung des lupinenproteinbasierten Fettaustauschstoffes sicherstellte, wobei die sensorische Qualität (Geschmack, Cremigkeit, Farbe) nur minimal, die ernährungsphysiologische (in-vitro-Verdaubarkeit, Maillard-Produkte, Polyphenolgehalt) jedoch nicht beeinflusst wurde. Starke Veränderungen der technofunktionellen Eigenschaften (z. B. Gelbildung, Wasserbindung, Emulgierbarkeit, Schaumbildung etc.) konnten sowohl im positiven als auch im negativen Sinne nicht beschrieben werden. Lichtmikroskopische Aufnahmen und Untersuchungen der Proteine mittels SDS-PAGE und DSC bestätigten eine nur geringfügige Beeinflussung der micellaren Struktur und Proteinzusammensetzung. Die Anwendung als Fettaustauschstoff in Lebensmitteln würde somit nicht beeinträchtigt. Der Einfluss der Saatgutbehandlung auf das Protein war wesentlich geringer als eine direkte thermische Behandlung des Proteinisolats. Im Hinblick auf den Gesamtprozess sollte eine Pasteurisierung der feuchten Proteinisolate im nichtproteinschädigenden Temperaturbereich (75 °C/5 min) dennoch durchgeführt werden, um während des Prozesses eingetragene Mikroorganismen zu inaktivieren.
12

Untersuchungen zur Bildung von Furosin und N-terminalen 2(1H)-Pyrazinonen / Studies on the formation of furosine and N-terminal 2(1H)-pyrazinones

Krause, René 05 March 2005 (has links) (PDF)
Furosin entsteht bei der Salzsäurehydrolyse aus den Amadori-Produkten des Lysins und wird als Marker für den Fortschritt der frühen Maillard-Reaktion, zur Beurteilung von lebensmitteltechnologischen Prozessen sowie zur Berechnung des verfügbaren und des nicht verfügbaren Lysins in Lebensmitteln verwendet. Für die Nutzung von Furosin als Qualitätsparameter ist die reproduzierbare und konstante Bildung während der Salzsäurehydrolyse entscheidend. Dies wird in der Literatur jedoch kontrovers diskutiert. Im ersten Abschnitt dieser Arbeit galt es deshalb, die molaren Ausbeuten an Furosin und den weiteren Hydrolyseprodukten Lysin, Pyridosin und N[epsilon]-Carboxymethyl-lysin zu bestimmen und damit eine sichere Interpretation der Ergebnisse zu ermöglichen. Dazu wurden peptid-gebundene Amadori-Produkte des N[alpha]-Hippuryl-lysins in chromatographisch reiner Form dargestellt. Weiterhin wurden N[alpha]-Hippuryl-N[epsilon]-carboxymethyl-lysin und Pyridosin als Standard gewonnen. Bei den Hydrolyseexperimenten zeigten die Fructosyl-Amadori-Produkte ein ähnliches Verhalten. Nach Hydrolyse mit 6M Salzsäure wurden molare Ausbeuten an Furosin von 32% für Fructosyl-lysin und jeweils 34% für Lactulosyl- und Maltulosyl-lysin bestimmt. Signifikant höhere Ausbeuten an Furosin waren nach Hydrolyse mit 8M Salzsäure festzustellen, 46% für Fructosyl-lysin, 50% für Lactulosyl-lysin und 51% für Maltulosyl-lysin. Im Gegensatz zu den Fructosyl-Derivaten war die molare Ausbeute an Furosin bei Tagatosyl-lysin unabhängig von der verwendeten Salzsäurekonzentration (6 bis 8M) und wurde zu 42% bestimmt. Anhand der auf Basis der molaren Ausbeuten ermittelten Überführungsfaktoren kann nun erstmals die Lysin-Derivatisierung mittels der Analytik von Furosin sicher bestimmt werden. Das ermöglicht exakte Aussagen zum Fortschritt nichtenzymatischer Glykierungsreaktionen sowohl in Lebensmittel als auch in vivo. Aufgrund der Relevanz für biologische Systeme und für Lebensmittel wurden weiterhin Reaktionen von alpha-Dicarbonylverbindungen mit kurzkettigen Peptiden und dem Protein Insulin unter physiologischen Bedingungen (pH=7,4 und 37°C) untersucht. Bei der Reaktion von Glyoxal mit ausgewählten Tripeptiden wurde eine sehr schnelle Derivatisierung der Peptide und jeweils die gleichzeitige Bildung eines definierten Produktes festgestellt. Mittels nuklearmagnetischer Resonanzspektroskopie und massenspektroskopischer Analyse konnten die Produkte zweifelsfrei, jeweils als die am N-Terminus durch einen 2(1H)-Pyrazinon-Ring modifizierten Peptide, aufgeklärt werden. Das Hauptprodukt der Reaktion von Methylglyoxal mit dem Peptid Gly-Ala-Phe wurde ebenfalls als 2(1H)-Pyrazinon-Peptid aufgeklärt. Nach Inkubation von Insulin mit Glyoxal unter physiologischen Bedingungen in verdünnter Lösung konnte weiterhin gezeigt werden, dass die 2(1H)-Pyrazinon-Bildung ebenfalls an einem Protein erfolgt. Die identifizierten N-terminalen 2(1H)-Pyrazinone weisen charakteristische UV-Absorptions- sowie Fluoreszenz-Spektren auf. Um die Reaktivität des N-Terminus und damit die Bedeutung der 2(1H)-Pyrazinon-Bildung beurteilen zu können, wurden vergleichende Studien mit dem als Hauptreaktionspartner für alpha-Dicarbonylverbindungen angesehenen Arginin durchgeführt. Bei diesen Experimenten zeigte der N-Terminus und peptidgebundenes Arginin eine nahezu identische Reaktivität. Auf Grund dieser Ergebnisse ist fest davon auszugehen, dass es sich bei den identifizierten N-terminalen 2(1H)-Pyrazinonen um eine neue Klasse von sogenannten Advanced Glycation Endproducts (AGEs) mit Bedeutung in physiologischen Systemen und in Lebensmitteln handelt.
13

Charakterisierung und Gewinnung von Oligosacchariden als potentiell funktionelle Lebensmittelinhaltsstoffe

Zerge, Katja 16 December 2014 (has links) (PDF)
Die Entwicklung neuer humanmilchähnlicher, funktioneller und bioaktiver Lebensmittel (z. B. Trinkmilch oder Joghurt), die Oligosaccharide mit einer möglichen Gesundheitswirkung enthalten („Health Claim”), sind für die menschliche Ernährung von besonderem Interesse. Ziel dieser Arbeit war es daher, geeignete Verfahren zu entwickeln, um - unter Ausnutzung der Transferaseaktivität von β-Galactosidase - komplexe Galacto-Oligosaccharide aus Lactose zu synthetisieren und nicht-proteingebundene, komplexe milcheigene Oligosaccharide aus Kuhmilch aufzureinigen und zu charakterisieren. Zur Identifizierung und Quantifizierung der Oligosaccharide wurden zunächst hochempfindliche Analysenmethoden etabliert (siehe Kapitel 4.1). Da Oligosaccharide Minorkomponenten in der Milch sind, mussten diese von Fetten, Proteinen und Lactose abgetrennt werden. Die Entfettung erfolgte durch Zentrifugation in der Kälte. Die Proteinabtrennung war unter Verwendung einer 10kDa-Ultrafiltrations-Membran optimal (siehe Kapitel 4.1.1.1). Die Abtrennung der Lactose von den Oligosacchariden stellte die größte Herausforderung dar, da beide Stoffklassen zu den Kohlenhydraten gehören und sich nur geringfügig in ihren Molmassen unterscheiden. Des Weiteren liegt Lactose in Kuhmilch im ca. 1000-fachen Überschuss im Vergleich zu den Oligosacchariden vor. Beim Vergleich verschiedener Aufarbeitungsmethoden zur Lactoseabtrennung stellte sich die Festphasenextraktion an Aktivkohle (GCC-SPE) als am besten geeignet heraus. Mit dieser Methode wurde - im Gegensatz zur ebenfalls untersuchten Größenausschlusschromatographie - eine hohe Reproduzierbarkeit der Analyten erreicht. Während bei der Größenausschlusschromatographie das Kuhmilch-Oligosaccharid GalNAc-α-(1→3)-Gal-β-(1→4)-Glc nahezu vollständigen verloren ging, konnten nach GCC-SPEAufarbeitung fast 100 % des Analyten wiedergefunden werden (siehe Kapitel 4.1.1.2). Zur Charakterisierung der Oligosaccharide wurde eine hochauflösende Anionenaustauscherchromatographie mit pulsierender amperometrischen Detektion (HPAEC-PAD) etabliert. Parallel zur hochempfindlichen Detektion mittels PAD wurde zur direkten Strukturaufklärung von underivatisierten Zuckern eine Online-Kopplung an einen Massendetektor (IT-MS) aufgebaut. Einzelne Analyten konnten mit Hilfe von kommerziell erhältlichen Oligosaccharidstandards identifiziert und quantifiziert werden (siehe Kapitel 4.1.1.3). Als weitere Möglichkeit zur Quantifizierung der Oligosaccharide wurden photometrische Schnelltests entwickelt (siehe Kapitel 4.1.2). Zur Absicherung der HPAEC-PAD-Analysendaten sollten zukünftig weitere Analysenmethoden etabliert werden (z. B. enzymatischer Verdau der Oligosaccharide, Analyse der Monosaccharide nach Hydrolyse der OS, HILIC-HPLC). Die entwickelte HPAEC-PAD-Methode wurde zur Identifizierung und Quantifizierung von Oligosacchariden in Milchproben verschiedener Nutztierarten (siehe Kapitel 4.2.1) und in Produktströmen der milch- und molkeverarbeitenden Industrie (siehe Kapitel 4.2.2) verwendet. Die Untersuchungen von Milchproben unterschiedlicher Nutztierarten zeigten, dass jede Milch hinsichtlich der MOS einzigartig ist. Dies konnte anhand der verschiedenen, identifizierten MOS mit unterschiedlichen Konzentrationen belegt werden. Der höchste MOS-Gehalt konnte in Humanmilch detektiert werden, gefolgt von Kamelmilch, Schafsmilch, Ziegenmilch, Kuhmilch und Stutenmilch (siehe Kapitel 4.2.1). Die Untersuchungen der Produktströme der milch- und molkeverarbeitenden Industrie zeigten, dass es während der Lactosekristallisation und der Aktivkohlebehandlung zu Verlusten an MOS kommt. Bei anderen Prozessschritten, wie Entfettung, Proteinabtrennung, Aufkonzentrierung oder Käseherstellung, war kein Einfluss auf die MOS-Konzentrationen ersichtlich (siehe Kapitel 4.2.2). Die entwickelte Methode zur OS-Bestimmung mittels HPAEC-PAD könnte zukünftig auf die Analysen proteingebundener Oligosaccharide ausgedehnt werden [[Grey, 2009] und [Weiß, 2001]]. Zur Herstellung eines Oligosaccharid-angereicherten Lebensmittels wurden Galacto-Oligosaccharide enzymatisch - unter Ausnutzung der Transferaseaktivität von β-Galactosidase - aus Lactose synthetisiert (siehe Kapitel 4.3). Für die Entwicklung des Verfahrens wurden verschiedene β-Galactosidasen (Enzyme aus Kluyveromyces lactis, Aspergillus oryzae und Bacillus circulans) bei unterschiedlichen Reaktionsbedingungen getestet. Die höchste GOS-Ausbeute (19,8 Flächenprozent der HPAEC an Haupt-Trisaccharid, 40,5 % GOS) konnte mit Hilfe der β-Galactosidase aus B. circulans bei pH 4, 40 °C und 12 U/g erreicht werden. Dabei wurden v. a. Tri- bis Pentasaccharide gebildet. Das Hauptreaktionsprodukt war das Trisaccharid 4'-Galactosyllactose (4'-GL). Mit Hilfe der β-Galactosidase aus A. oryzae konnte bei pH 4,5, 40 °C und 12 U/g die zweitgrößte GOS-Ausbeute (14,2 % Haupt-Trisaccharid, 19,7 % GOS) synthetisiert werden. Dabei wurden v. a. Tri- und Tetrasaccharide mit dem Hauptreaktionsprodukt 6'-Galactosyllactose (6'-GL) gebildet. Die geringste GOS-Ausbeute (10,5 % Haupt-Trisaccharid, 3,0 % GOS) wurde mit der β-Galactosidase aus K. lactis bei pH 7, 40 °C und 12 U/g erreicht. Di- und Trisaccharide sowie ein geringer Anteil an Tetrasacchariden konnten dabei synthetisiert werden. Das Hauptreaktionsprodukt war hierbei das Trisaccharid 6'-GL. Außerdem konnte gezeigt werden, dass die milcheigenen Oligosaccharide während der Lactosehydrolyse mit den drei getesteten β-Galactosidasen weitgehend erhalten bleiben (siehe Kapitel 4.3.4). Neben den Galacto-Oligosacchariden, die nach enzymatischer Synthese direkt im Lebensmittel eingesetzt werden können, wurden milcheigene Oligosaccharide aus Kuhmilch aufgereinigt (siehe Kapitel 4.4.1). Zur Aufreinigung der MOS wurden Nanofiltrationsversuche in verschiedenen Maßstäben, mit unterschiedlichen Prozessparametern und diversen Membranen durchgeführt. Die im hohen Überschuss vorhandene Lactose wurde vor der Nanofiltration durch enzymatische Hydrolyse in ihre Monosaccharide gespalten, wodurch die Trennung von Monosacchariden und MOS verbessert wurde. Die Membran SR50/SR2 stellte sich für die MOS-Aufreinigung als am besten geeignet heraus. Mono- und Disaccharide konnten mit dieser Membran nahezu vollständig abgetrennt und MOS zu 42,1 % bis 52,4 % wiedergefunden werden. Das Verhältnis der Mono- und Disaccharide zu MOS konnte von ca. 1000:1 auf 18,5:1 zu Gunsten der MOS verändert werden. Der Anteil der Oligosaccharide am Gesamtzuckergehalt wurde von 0,1 % auf 5,1 % erhöht. Aus 40 kg hydrolysiertem Ultrafiltrations-Magermilchpermeat konnten 332,5 mg GalNAc-α-(1→3)-Gal-β-(1→4)-Glc, 414,1 mg 3'-SL und 91,5 mg 6'-SL gewonnen werden (Kapitel 4.4.1.4). Die durch Nanofiltration aufgereinigten, MOS-haltigen Proben sind für den Einsatz in einem potentiell funktionellen Lebensmittel geeignet. Da der Restlactosegehalt der synthetisierten, GOS-haltigen Proben und der aufgereinigten, MOS-haltigen Proben für weitere Analysen - wie orientierende Studien zur potentiell bifidogenen Wirkung - zu hoch war, erfolgte eine zweite Aufreinigung mittels präparativer Chromatographie an Aktivkohle (siehe Kapitel 4.4.2). Dadurch konnten bei den synthetisierten, GOS-haltigen Proben die Monosaccharide vollständig entfernt, der Restlactosegehalt auf unter 1 % am Gesamtzuckergehalt gesenkt und GOS aufgereinigt werden. Durch die Aktivkohle-Aufreinigung der durch Nanofiltration aufgereinigten, MOS-haltigen Proben konnten Mono- und Disaccharide von dem milcheigenen Oligosaccharid GalNAc-α-(1→3)-Gal-β-(1→4)-Glc sowie von den GOS - entstanden durch die vorherige Behandlung mit β-Galactosidase - abgetrennt werden. Die Sialyllactosen gingen dabei nahezu vollständig verloren. Auf Grund der vermuteten gesundheitsfördernden Wirkung der Sialyllactosen bedarf es weiterer Forschungsaktivitäten. Insbesondere ist eine Optimierung des Aufgabevolumens, der Konditionierung und der Wahl der stationären Phase wünschenswert. Mit den durch Aktivkohle aufgereinigten GOS-Lösungen, die weniger als 1 % Mono- und Disaccharide am Gesamtzuckergehalt enthielten, wurden orientierende Studien zur potentiell bifidogenen Wirkung durchgeführt (siehe Kapitel 4.5). Die orientierenden Studien mit Bifidobacterium longum ließen eine potentiell bifidogene Wirkung der untersuchten GOS-Lösungen erkennen. Diese GOS-Proben zeigten dabei eine stärkere bifidogene Wirkung als die bifidogene Referenzsubstanz Lactulose und der Vivinal®GOS-Sirup. Zukünftig sollten die Proben, die nach Beendigung der bakteriellen Reaktion gewonnen wurden, mittels HPAEC-PAD analysiert werden. Dadurch könnte der Kohlenhydratabbau bzw. die Bildung organischer Säuren untersucht werden. Der zeitliche Verlauf sowie der Einsatz anderer Mikroorganismen - wie Lactobazillen und Clostridien - könnten ebenfalls untersucht werden. Andere orientierende Studien, wie antiinflammatorische Tests, wären bei der weiteren Charakterisierung der Oligosaccharide hilfreich. Die Herstellung eines Oligosaccharid-angereicherten Lebensmittels erfolgte im Labormaßstab unter Zusatz der potentiell bifidogenen GOS-Lösung, die mit Hilfe von β-Galactosidase aus K. lactis synthetisiert wurde. Die Art der Erhitzung des Lebensmittels - Pasteurisierung vs. Hocherhitzung - hatte keinen Einfluss auf die Zuckerzusammensetzung und die Zuckergehalte. Während einer anschließenden sechswöchigen Lagerung in der Kälte konnte kein Abbau der Kohlenhydrate detektiert werden. Als Ausblick für weitere Forschungen ist die Bestätigung der potentiell bifidogenen Wirkung der MOS-haltigen Proben von primärer Bedeutung. Anschließend könnten Studien mit funktionellen, MOS-haltigen Lebensmitteln durchgeführt werden. Dabei sollte versucht werden, ein humanmilchähnliches Lebensmittel mit ca. 20 % sauren und ca. 80 % neutralen Oligosacchariden herzustellen. Die mittels Nanofiltration aufgereinigten, MOS-haltigen Proben könnten als saurer Zusatz und die enzymatisch synthetisierten, GOS-haltigen Proben als neutraler Zusatz verwendet werden. Des Weiteren sollte eine Überprüfung der potentiell bifidogenen Wirkung sowie eine sensorische Prüfung des hergestellten Lebensmittels durchgeführt werden. Sobald MOS durch Nanofiltration bzw. GOS mittels enzymatischer Synthese im großtechnischen Maßstab aufgereinigt bzw. hergestellt werden können, sind Humanstudien zur Bestätigung der Wirksamkeit von milcheigenen Oligosaccharide bzw. der Galacto-Oligosaccharide möglich. Im Rahmen der vorliegenden Arbeit konnten potentiell funktionelle Lebensmittelinhaltsstoffe (enzymatisch synthetisierte, GOS-haltige Lösungen) und Lebensmittelinhaltsstoffe, deren vermutete Funktionalität noch nicht bestätigt wurde (durch Nanofiltration aufgereinigte, MOS-haltige Lösungen), hergestellt werden. Unter Verwendung der in dieser Arbeit gewonnenen Erkenntnisse und der Erfüllung der im Ausblick geschilderten Bedingungen, ist eine großtechnische Produktion eines funktionellen, Oligosaccharid-angereicherten Lebensmittels möglich.

Page generated in 0.0539 seconds