• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ROS generated by mitochondrial electron transport chain complexes I and III regulate differentiation of the pluripotent cell line P19

Pashkovskaia, Natalia 13 March 2018 (has links) (PDF)
Mitochondria are essential for the viability of mammalian cells and provide a compartment for specific chemical reactions. Cellular respiration -- the main mitochondrial function -- is tightly connected with ROS production: the mitochondrial electron transport chain complexes I and III are the main ROS sources in mammalian cells. It has been reported that complex I and complex III activities are essential for cell cycle, apoptosis and stem cell differentiation (Spitkovsky et al., 2004; Varum et al., 2009; Lee et al., 2011; Ma et al., 2011; Tormos et al., 2012). In our work, we aimed to investigate the role of mitochondrial electron transport chain activity in the regulation of the differentiation potential and to unravel signaling pathways that could participate in this regulation. As a model, we used the P19 pluripotent stem cell line that can be easily differentiated into trophoblasts, expressing intermediate filaments cytokeratin 8/18, and neurons, which express cytoskeleton protein beta-III-tubulin. We first showed that both trophoblast and neural differentiation of P19 cells were accompanied by activation of cellular respiration. The analysis of respiratory chain complexes and supercomplexes, however, showed that undifferentiated P19 cells, as well as their differentiated derivatives did not differ in their respiratory machinery, including functional respirasomes. While undifferentiated cells did not use respiration as the main energy source, cellular respiration was activated during differentiation, indicating that oxidative metabolism was important for efficient differentiation. To investigate the potential role of mitochondrial electron transport chain activity we monitored the influence of a disrupted electron flow on the differentiation of P19 cells. We found that the activity of complex I and complex III influenced the differentiation potential of the pluripotent P19 cell line: the presence of complex I and complex III inhibitors rotenone, antimycin A, or myxothiazol increased the amount of cytokeratin 8/18+ cells during trophoblast differentiation, but almost completely prevented the formation of neuron-like beta-III-tubulin+ cells during neuron differentiation. Moreover, a low oxygen level (1 % O2 vs 21 % O2 in atmosphere) - the final electron acceptor - had the same effect on differentiation. These data suggest that mitochondrial electron transport chain activity contributes to the regulation of differentiation. The presence of complex I and complex III inhibitors, as well as oxygen scarcity, increase ROS production. We suggested that increased ROS level could explain the observed effects. By visualizing mitochondrial superoxide production with a specific dye – MitoSox - we confirmed that rotenone, antimycin A, myxothiazol, as well as low oxygen conditions, increased the superoxide level. These results suggest that the observed changes of the differentiation potential of P19 cells are associated with ROS production. To prove this idea, we differentiated P19 cells in presence of paraquat – a known ROS inducer. In line with our hypothesis paraquat promoted trophoblast differentiation. The received results suggest that the mitochondrial electron transport chain activity regulates differentiation through the ROS level. ROS are secondary messengers that participate in numerous processes including cell proliferation and differentiation. We aimed to predict the signal pathway that connects ROS level in stem cells and their differentiation potential. For this purpose, we performed a microarray analysis and compared the gene expression profiles of cells grown under hypoxia or in the presence of the complex III inhibitor myxothiazol with untreated control cells. The expression analysis revealed p53 as a transcriptional factor that impacts the differentiation potential in treated cells. p53 is a known redox-sensing molecule (Bigarella et al., 2014) that influences the differentiation potential through cell cycle control (Maimets et al., 2008). This observation is in line with our results and suggests that p53 may regulate the differentiation potential of P19 cells. We are planning to investigate the role of p53 signaling in the regulation of cell cycle and differentiation potential of P19 cell line.
2

Charakterisierung der mitochondrialen Außenmembranproteine Om14p und Om45p von Saccharomyces cerevisiae

Lauffer, Heidemarie Susann 04 July 2013 (has links) (PDF)
Aufgrund der vielfältigen metabolischen Prozesse und Funktionen von Mitochondrien finden durch beide mitochondriale Membranen zahlreiche Transportprozesse statt. Es wird weitgehend angenommen, dass der Transfer von metabolischen Intermediaten durch die äußere Membran von den zahlreichen Porinporen gewährleistet wird. Im Gegensatz dazu sind in der inneren Membran spezifische Transportproteine für die Translokationsprozesse verantwortlich. Neben dem gut untersuchten Porinmolekül (Por1p) gibt es in der Hefe S. cerevisiae unter respiratorischen Bedingungen zwei weitere abundante, aber funktionell unbekannte Proteine in der äußeren Membran von Mitochondrien - Om14p und Om45p -, deren molekular-biologische Charakterisierung Gegenstand dieser Arbeit war. Mit drei unabhängigen Methoden (2D BN - SDS-PAGE, Co-IP und TAP) konnte gezeigt werden, dass die beiden Proteine Om14p und Om45p zusammen mit Por1p einen Proteinkomplex in der äußeren Membran ausbilden, wobei Por1p eine von Om14p und Om45p unabhängige Porenstruktur ausbildet. Bei Bedarf, möglicherweise über Phosphorylierungen signalisiert, binden Om14p und Om45p an diese Struktur, wobei Om45p dabei der direkten Interaktion von Om14p mit Por1p bedarf. Die Identifikation von Interaktionspartnern des Fusionsproteins Om14p-TAP durch Einsatz einer präparativen TAP mit anschließender massenspektrometrischer Analyse sowie die Untersuchungen der Effekte von OM14- und/oder OM45- Gendeletionen auf das mitochondriale Proteom mit einem 2D DIGE-Verfahren führten zur Aufstellung von funktionalen Zusammenhängen des Proteinpaares Om14p/Om45p. Mit Wachstumsuntersuchungen von Deletionsmutanten in Gegenwart von in den Mitochondrien toxisch wirkenden Substanzen sowie durch ein in dieser Arbeit entwickeltes Testverfahren zur Bestimmung des mitochondrialen ATP-Flusses, konnten die funktionalen Hypothesen für die Proteine Om14p und Om45p initial verifiziert werden. Zusammengefasst unterstützen die Daten dieser Arbeit die Idee von einem hochgradig flexiblen System der Mitochondrien, zur Gewährleistung von effizienten Transportvorgängen durch beide Membranen. Eine koordinierte Bindung der Porinpore an die spezifischen Transporter der inneren Membran wird wahrscheinlich durch die Aktivität des Proteinpaares Om14p/Om45p vermittelt. In diesem Zusammenhang könnten beide Proteine als eine Art Lizenzierungsfaktor fungieren und die Positionierung der Porinpore an die entsprechenden Proteine der inneren Membran erzeugen. Dadurch würde ein effektives System für den Austausch von metabolischen Intermediaten und Substraten der mitochondrialen Atmungskette entstehen. Ebenfalls durch diese Arbeit nicht auszuschließen ist die Vorstellung, dass die Proteine Om14p und Om45p einen Einfluss auf die spezifischen Transportproteine der inneren Membran oder die Porinpore der äußeren Membran ausüben. Phosphatrest-Übertragungen, die zu Konformationsänderungen oder Porenöffnungen führen könnten, sind beispielsweise vorstellbar. Die Stoffwechseladaption einer Zelle bei einem diauxic shift ist durch einen verstärkten mitochondrialen Import von Metaboliten, Co-Faktoren und Proteinen sowie häufigerer mitochondrialer Teilungsprozesse charakterisiert. Om14p und Om45p sind bei einem Wechsel zu nicht-fermentativen Bedingungen verstärkt präsent. Diese beiden Proteine könnten der Hefe einen entscheidenden Vorteil bei der Synchronisierung der genannten Prozesse liefern, indem sie eine verbesserte Erreichbarkeit bzw. eine Veränderung der Selektivität von bereitgestellten Kanälen bzw. Transportproteinen in beiden mitochondrialen Membranen bewirken.
3

Assembly of cytochrome c oxidase: the role of hSco1p and hSco2p

Paret, Claudia 18 November 2001 (has links) (PDF)
COX deficiency in human presents a plethora of phenotypes which is not surprising given the complexity of the enzyme structure and the multiple factors and many steps required for its assembly. A functional COX requires three mitochondrially encoded subunits (Cox1p, Cox2p and Cox3p), at least 10 nuclearly encoded subunits, some of which are tissue specific, and a yet unknown number of assembly factors. Mutations in four of these factors, hSco1p, hSco2p, hCox10p and hSurf1p, have been associated with lethal COX deficiency in patients. Sco proteins, conserved from prokaryotes to eukaryotes, are probably involved in the insertion of copper in COX. The role of hSco1p and hSco2p in this process was investigated in this work. Moreover the importance of some hSco mutations found in patients was analysed. Both in vitro and in vivo analyses show that the hSco proteins are localised in the mitochondria. Both proteins are per se unable to substitute for ySco1p. However, a chimeric construct consisting of the N-terminal portion, the TM and a part of the C-terminal portion of ySco1p and the remaining C-terminal part derived from hSco1p was able to complement a ysco1 null mutant strain. This construct was used to define the role of a point mutation (P174L) found in the hSCO1 gene of infants suffering from ketoacidotic coma. These mutation was shown to affect the COX activity and the levels of Cox1p and Cox2p. The fact that copper was able to suppress this mutation, strongly outlined the importance of Sco proteins in the copper insertion in COX. The C-terminal portions of recombinant hSco1p and hSco2p were purified from E. coli by affinity chromatography. The purified proteins were subjected to atomic emission and absorption analyses and were shown to specifically bind copper. A stoichiometry of 1:1 for hSco2p and of 0,6:1 for hSco1p was determined. To identify the Aa residues involved in copper binding, in vitro mutagenesis was performed. hSco1p and hSco2p, lacking the cysteines of the predicted metal binding site CxxxC, show a dramatic decrease in the ability to bind copper. A model for the structure of the metal binding site in hSco proteins is proposed. hSco proteins could bind copper with trigonal coordination, involving the two cysteines of the CxxxC motif and a conserved histidine. The purified recombinant proteins were also used in an enzymatic assay to test their ability to reduce disulfide bridges, similar to thioredoxin-like proteins involved in the assembly of bacterial COX. Both hSco proteins were not able to act as thioredoxins suggesting a role for the hSco proteins as copper chaperones. To define the pathway of the copper transfer to COX, hSco proteins were tested for their ability to interact with hCox17p, a mitochondrial copper chaperone, and with Cox2p, which contains two copper ions. An interaction between hSco1p and Cox2p was detected. Both hSco proteins were shown to homomerise and to form heterodimers one with each other. Two mutations found in hSCO2 patients suffering from hypertrophic cardiomyopathy, (E140K and S225F) were shown not to affect the copper binding properties, the intracellular localisation and the ability to form homomers. In accordance to these data, a model is proposed in which hSco2p dimers transfer copper to hSco1p dimers. hSco1p dimers interact with COX and insert copper in the binuclear centre of Cox2p.
4

Mitochondrial copper homeostasis in mammalian cells / Mitochondrialer Kupfermetabolismus in Säugerzellen

Oswald, Corina 05 October 2010 (has links) (PDF)
Assembly of cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, requires a concerted activity of a number of chaperones and factors for the correct insertion of subunits, accessory proteins, cofactors and prosthetic groups. Most of the fundamental biological knowledge concerning mitochondrial copper homeostasis and insertion of copper into COX derives from investigations in the yeast Saccharomyces cerevisiae. In this organism, Cox17 was the first identified factor involved in this pathway. It is a low molecular weight protein containing highly conserved twin Cx9C motifs and is localized in the cytoplasm as well as in the mitochondrial intermembrane space. It was shown that copper-binding is essential for its function. So far, the role of Cox17 in the mammalian mitochondrial copper metabolism has not been well elucidated. Homozygous disruption of the mouse COX17 gene leads to COX deficiency followed by embryonic death, which implies an indispensable role for Cox17 in cell survival. In this thesis, the role of COX17 in the biogenesis of the respiratory chain in HeLa cells was explored by use of siRNA. The knockdown of COX17 results in a reduced steady-state concentration of the copper-bearing subunits of COX and affects growth of HeLa cells accompagnied by an accumulation of ROS and apoptotic cells. Furthermore, in accordance with its predicted function as a copper chaperone and its role in formation of the binuclear copper center of COX, COX17 siRNA knockdown affects COX-activity and -assembly. It is now well accepted that the multienzyme complexes of the respiratory chain are organized in vivo as supramolecular functional structures, so called supercomplexes. While the abundance of COX dimers seems to be unaffected, blue native gel electrophoresis reveals the disappearance of COX-containing supercomplexes as an early response. Accumulation of a novel ~150 kDa complex containing Cox1, but not Cox2 could be observed. This observation may indicate that the absence of Cox17 interferes with copper delivery to Cox2, but not to Cox1. Data presented here suggest that supercomplex formation is not simply due to assembly of completely assembled complexes. Instead an interdependent assembly scenario for the formation of supercomplexes is proposed that requires the coordinated synthesis and association of individual complexes.
5

Proteomic Analysis Reveals a Novel Function of the Kinase Sat4p in Saccharomyces cerevisiae Mitochondria

Gey, Uta, Czupalla, Cornelia, Hoflack, Bernard, Krause, Udo, Rödel, Gerhard 07 May 2015 (has links) (PDF)
The Saccharomyces cerevisiae kinase Sat4p has been originally identified as a protein involved in salt tolerance and stabilization of plasma membrane transporters, implicating a cytoplasmic localization. Our study revealed an additional mitochondrial (mt) localization, suggesting a dual function for Sat4p. While no mt related phenotype was observed in the absence of Sat4p, its overexpression resulted in significant changes of a specific mitochondrial subproteome. As shown by a comparative two dimensional difference gel electrophoresis (2D-DIGE) approach combined with mass spectrometry, particularly two groups of proteins were affected: the iron-sulfur containing aconitase-type proteins (Aco1p, Lys4p) and the lipoamide-containing subproteome (Lat1p, Kgd2p and Gcv3p). The lipoylation sites of all three proteins could be assigned by nanoLC-MS/MS to Lys75 (Lat1p), Lys114 (Kgd2p) and Lys102 (Gcv3p), respectively. Sat4p overexpression resulted in accumulation of the delipoylated protein variants and in reduced levels of aconitase-type proteins, accompanied by a decrease in the activities of the respective enzyme complexes. We propose a regulatory role of Sat4p in the late steps of the maturation of a specific subset of mitochondrial iron-sulfur cluster proteins, including Aco1p and lipoate synthase Lip5p. Impairment of the latter enzyme may account for the observed lipoylation defects.
6

Identifizierung und funktionelle Charakterisierung mitochondrialer Proteinkinasen und-phosphatasen in Saccharomyces cerevisiae

Gey, Uta 19 December 2012 (has links) (PDF)
Über die Proteinphosphorylierung in den Mitochondrien der Hefe Saccharomyces cerevisiae ist im Gegensatz zu anderen Kompartimenten nur wenig bekannt. Insbesondere hinsichtlich der physiologischen Bedeutung sowie den an der Modifikation beteiligten Enzymen sind kaum Daten verfügbar. Vor diesem Hintergrund stand die Identifizierung und molekularbiologische Charakterisierung mitochondrialer Proteinkinasen (PKasen) und Proteinphosphatasen (PPasen) im Fokus dieser Arbeit. Unter Verwendung komparativer 2D DIGE-Analysen konnten zwei Strategien erfolgreich verfolgt werden: Zum einen wurde die Konsequenz einer Gendeletion von ausgewählten PKasen bzw. PPasen mit putativer mitochondrialer Lokalisation untersucht. Dabei gelang es, die an der in vivo Regulation des Pyruvatdehydrogenase(PDH)-Komplexes beteiligten Enzyme erstmalig zu identifizieren und im Folgenden deren regulatorisches Zusammenspiel umfassend zu analysieren. Zum anderen wurde in einem inversen Ansatz beispielhaft für die PKase Sat4p untersucht, welche Auswirkungen eine Überexpression dieser Kinase auf das mt Proteom hat. Erste Hinweise, welche zur Identifizierung der PDH-Kinasen (Pkp1p und Pkp2p) bzw. PDH Phosphatasen (Ppp1p und Ppp2p) führten, lieferten die signifikanten Spotänderungen von Pda1p (E1α-Untereinheit des PDH-Komplexes) in den 2D-DIGE-Analysen. Im Folgenden wurde die mitochondriale Lokalisation der vier regulatorischen Enzyme unter Verwendung Epitop-getaggter Varianten nachgewiesen sowie Pda1p in unabhängigen phosphospezifischen Analysen als Target der Phosphorylierung verifiziert. Die Phosphorylierungsstelle von Pda1p konnte massenspektrometrisch dem Serin313 zugeordnet werden. PDH-Aktivitätsmessungen zeigten, dass die Phosphorylierung von Pda1p den PDH Komplex inaktiviert, während eine Dephosphorylierung zur Aktivierung führt. Dabei war der Einfluss der Deletion der PDH Kinasen bzw. der PDH-Phosphatasen unterschiedlich stark ausgeprägt. Während Ppp1p und Ppp2p partiell redundante Funktionen besitzen, lassen die Analysen komplementäre Aktivitäten von Pkp1p und Pkp2p vermuten. Eine physikalische Interaktion der beiden Kinasen wurde in vivo nachgewiesen und deutet auf die Bildung funktioneller Heteromere hin. Durch Analysen in der 2D-BN/SDS-PAGE konnte eine Assoziation der PDH-Kinasen sowie PDH-Phosphatasen mit dem hochmolekularen, etwa 8 MDa großen PDH-Komplex sowie mit PDH-Subkomplexen geringeren Molekulargewichts gezeigt werden. Die Erkenntnisse dieser Arbeit ermöglichten in Verbindung mit denen eigener Vorarbeiten die Erstellung eines Modells zur PDH-Regulation in Saccharomyces cerevisiae. Neben der Aktivitätsregulation durch die von Pkp1p/Pkp2p bzw. Ppp1p/Ppp2p katalysierte Phosphorylierung wird eine Funktion der regulatorischen Enzyme – insbesondere der PDH-Kinasen – an der Assemblierung bzw. Stabilisierung des PDH-Komplexes postuliert. Es konnte somit gezeigt werden, dass in der Hefe ein ähnlicher, aber nicht identischer Regulationsmechanismus vorliegt wie in höheren Eukaryoten. Die zweite Strategie, welche in dieser Arbeit exemplarisch für eine PKase verfolgt wurde, führte zur Identifikation einer bislang unbekannten Funktion der Kinase Sat4p in den Mitochondrien. Es konnte gezeigt werden, dass Sat4p dual lokalisiert in der cytoplasmatischen sowie mitochondrialen Fraktion vorliegt und selbst Target der Phosphorylierung ist. Die Überexpression von Sat4p führte nicht nur zu einem verminderten Wachstum auf nicht fermentierbaren Medien, sondern auch zur Beeinflussung spezifischer mitochondrialer Proteingruppen. Während die Spots der Proteine Pil1p und Lsp1p eine höhere Intensität zeigten, wiesen die Fe/S-Proteine Aco1p und Lys4p eine verminderte „steady-state“-Konzentration auf. Darüber hinaus lagen die Proteine, welche Liponsäure als prosthetische Gruppe tragen (Lat1p, Kgd2p und Gcv3p), im Tet-Sat4-Stamm vorwiegend in ihrer nicht-lipoylierten Form vor. Die Lipoylierungsstellen aller drei Proteine konnten im Wildtyp unter Nutzung von nanoLC-MS/MS erstmals experimentell bestimmt und Lys75 (Lat1p), Lys114 (Kgd2p) bzw. Lys102 (Gcv3p) zugeordnet werden. Die fehlende Lipoylierung der Proteine bzw. die verminderte Proteinkonzentration der Aconitase führte zu einer stark verminderten Aktivität der betroffenen Enzymkomplexe. Neben den in der Literatur beschriebenen putativen Funktionen von Sat4p bei der Regulation cytoplasmatischer Proteine wurde basierend auf den Erkenntnissen der Analysen eine spezifische Funktion der Kinase in den Mitochondrien postuliert. Das Modell schlägt eine Rolle von Sat4p in den späten Schritten der Maturation einer spezifischen Gruppe von mitochondrialer Fe/S-Proteinen vor. Die Beeinträchtigung der Lipoatsynthase Lip5p, welche neben Aco1p und Lys4p ebenfalls zu dieser Gruppe gehört, führt vermutlich sekundär zum beobachteten Verlust der Lipoylierung von Lat1p, Kgd2p und Gcv3p.
7

Assembly of mitochondrial ubiquinol-cytochrome c oxidoreductase complex in yeast Saccharomyces cerevisiae: The role of Cbp3p and Cbp4p assembly factors / The role of Cbp3p and Cbp4p assembly factors / Assemblierung des mitochondrialen Ubiquinol-Cytochrom c Oxidoreduktase Komplexes in der Hefe Saccharomyces cerevisiae / Die Rolle der Assemblierungsfaktoren Cbp3p und Cbp4p

Kronekova, Zuzana 22 June 2005 (has links) (PDF)
Ubiquinol-cytochrome c reductase (complex III) is a central component of the respiratory chain of the inner mitochondrial membrane. It transfers electrons from reduced ubiquinone to ferricytochrome c. Correctly assembled and functional complex III is an essential prerequisite for oxidative energy metabolism. Complex III deficiency has been reported to be associated with several neurodegenerative diseases. Formation and assembly of complex III requires a multitude of specific nuclearly encoded proteins. For example, gene specific translational activators for cytochrome b synthesis as well as three non-subunit proteins, which are important for assembly and/or stability have been detected. The role of Bcs1p in assembly of Rieske FeS protein and Qcr10p into complex III has been clasified recently. The role of the two putative chaperones, Cbp3p and Cbp4p, is not known. In spite of the similar phenotype of cbp3D and cbp4D strains, that suggests the role of both proteins in the same step of complex III assembly, we were able for the first time to demonstrate differences on the molecular level between both deletion mutants. We show by BN-PAGE that cbp3D and cbp4D mutants are disturbed in complex III assembly and accumulate intermediate-sized forms of the complex. Moreover deletion of CBP3 interferes with the formation of complex III/IV supracomplexes. Our studies show that Cbp3p and Cbp4p interact and are present in high molecular weight complexes, some of which might represent intermediates of complex III assembly. Overexpression of Cbp4p cannot substitute for the function of Cbp3p, but high level expression of Cbp3p can partially compensate for the lack of Cbp4p. Because lipids play an important role for complex III assembly and stability, we analysed the mitochondrial lipid composition of cbp3D and cbp4D mutants. Our data show that mitochondria of both mutants exhibit a wild type-like lipid composition, that favors the idea that Cbp3p and Cbp4p are specific assembly factors for complex III rather than components of the mitochondrial lipid metabolism. By complementation studies we have shown that Cbp3 proteins of S. cerevisiae, S. pombe and human are (partially) functional homologues. A yeast model based on chimeric constructs of S. cerevisiae and human proteins was constructed, which allows to test the pathogenicity of human mutations. To define the role/s of Cbp3p and Cbp4p in the assembly pathway of complex III, interactions of selected subunits with both assembly factors were analysed by TAP- or co-immunoprecipitation. Based on the results of Cbp3p and Cbp4p topologies, BN-PAGE analysis of null mutant strains and interaction studies a model for complex III assembly and the roles of Cbp3p and Cbp4p in this process are proposed. I present a hypothesis, according to which Cbp3p and Cbp4p form a ?scaffold? for the assembly of all three putative sub-complexes, may act independently in the first steps of bc1 complex assembly (e. g. the formation of sub-complexes) and interact together to assist the final assembly of sub-complexes into a mature enzyme. / Der Ubiquinol-Cytochrom c Reductase (Komplex III) ist eine zentrale Komponente der Atmungskette der inneren Mitochondrienmembran. Er transferiert Elektronen von reduziertem Ubiquinon auf Ferricytochrom c. Der korrekt assemblierte und funktionale Komplex III ist eine essenzielle Voraussetzung für den oxidativen Energiemetabolismus. Komplex III Defizienz ist assoziiert mit verschiedenen neurodegenerativen Krankheiten...

Page generated in 0.026 seconds