1 |
Zuverlässigkeit 3D-integrierter Chips: Die Rolle metallischer Oberflächen und Grenzflächen / Reliability of 3D-integrated chips: The role of metallic surfaces and interfacesZschech, Ehrenfried 27 March 2013 (has links) (PDF)
Abstract des Vortrages:
The reliability-limiting effects in 3D IC structures using TSVs including mechanical stress distributions and the resulting effects on material integrity (e.g. failure modes like interface delamination, cohesive cracking, metallurgical degradation at joints, and chip-package interaction) and finally on device performance degradation are challenges in advanced 3D integration technologies and product development. Managing internal mechanical stress is a key task to ensure high reliability of products manufactured in advanced CMOS technology nodes, and it is a highly ranked concern for 3D TSV technologies. It requires the determination of materials properties, including Young’s modulus, Poisson ratio and coefficient of thermal expansion (CTE), for each material used. For polycrystalline materials, their microstructure has to be considered.
In this talk, one reliability-limiting effect, interface delamination and so-called “pop-up” of copper TSV structures will be addressed. Shear stress along the Cu/Si interface and adhesion of the interfaces in a complex stack (Si/liner/barrier/seed/Cu) are parameters that have to be considered. Metal barrier and seed films and the respective surfaces will be discussed in the context of interface strength. Nano X-ray tomography is currently the only analytical technique to study the so-called “pop-up” effect quantitatively, without modifying the region of interest.
|
2 |
Technische Anforderungen von Oberflächen- und Randschichttechnologien aus tribologischer SichtFranke, Rainer, Haase, Ingrid 12 February 2013 (has links) (PDF)
Abstract des Vortrages:
Die Wirkungstiefe einer Reibungsbeanspruchung von Werkstoffen reicht von wenigen Mikrometern bis zu etwa einem Millimeter. Die Randschicht der Werkstoffe sollte entsprechend angepasst sein. Durch Reibung beanspruchte Werkstoffe verschleißen in Abhängigkeit von den Systemeigenschaften des tribologischen Systems durch vier Elementarmechanismen, Adhäsion, Abrasion, Ermüdung und tribochemische Reaktionsschichtbildung.
Das Gefüge in der Randschicht muss so eingestellt werden, dass Adhäsion, Ermüdung und tribochemische Reaktionsschichtbildung weitestgehend unterdrückt sind und der abrasive Mechanismus im Gleichgewichtszustand des Tribosystems eine minimale konstante Rate aufweist. Beschichtungen bestehen meist aus einer harten Schicht auf einem weicheren Untergrund, die bei stärkerer Beanspruchung zerstört wird. Bessere Eigenschaften sind zu erwarten, wenn in der Randschicht des Werkstoffes Veränderungen vorgenommen werden, die einen kontinuierlichen Übergang zum Grundwerkstoff bewirken. Von besonderem Interesse ist dabei das Umschmelzlegieren mit dem Elektronenstahl (EBUL). Damit lassen sich lokal Reibungskoeffizient, Verschleiß- und Korrosionswiderstand oder die thermische Leitfähigkeit durch Zulegieren von Elementen oder Dispergieren von Hartstoffpartikeln entsprechend der Beanspruchung verändern. In Studien wurde gezeigt, dass EBUL zu signifikant höheren Härten in der Randschicht führt, welche den Verschleißwiderstand erhöhen. Die Härtesteigerung kann durch den Volumenanteil der zulegierten Elemente eingestellt werden. Die Härte des umschmelzlegierten Gefüges steigt mit zunehmendem Anteil von Ausscheidungen und intermetallischen Phasen. Die Härte wird weiterhin durch die Größe und Verteilung der Ausscheidungen und Phasen bestimmt.
|
Page generated in 0.0226 seconds