Spelling suggestions: "subject:"ryanodine"" "subject:"anodin""
1 |
Pathophysiologie der malignen Hyperthermie und des Human-Stress-Syndroms Nachweis von drei neuen Mutationen im Ryanodinrezeptorgen (RYR1)Krieger , Thorsten January 2007 (has links)
Zugl.: Hamburg, Univ., Diss., 2007 u.d.T.: Krieger, Thorsten: Nachweis von drei neuen Mutationen im Ryanodinrezeptorgen (RYR1) bei Patienten mit maligner Hyperthermie und Human-Stress-Syndrom / Hergestellt on demand
|
2 |
Thérapie génique par saut d'exon : application à une Myopathie à Core et à un cas de syndrome OculoCérébroRénale de Lowe / Exon skipping therapy application to structural myopathy and Lowe syndromeRendu, John 10 June 2014 (has links)
Après la transcription, le pré ARNm subit des étapes de maturation avant de sortir du noyau pour être traduit. Une des étapes de maturation est l'épissage. Il permet de souder les séquences codantes de l'ARNm entre elles (les exons) et d'exclure les régions non codantes (les introns).Des mutations génétiques sont à l'origine de défaut d'épissage. Elles peuvent conduire à des rétentions d'intron, des sauts d'exon et des inclusions de séquences introniques appelées pseudo exons.Ma thèse a porté sur l'utilisation du saut d'exon pour corriger ces inclusions. Je me suis intéressé à deux pathologies : la myopathie à cores et le syndrome de LowePour le premier cas, je me suis intéressé à une mutation dans l'intron 101 du gène RyR1. Cette mutation est à l'origine de la création d'un site donneur d'épissage qui active un site accepteur provoquant l'inclusion d'un pseudo exon de 99 nucléotides. Cette inclusion induit une baisse de la quantité du canal calcique RyR1 dans les cellules du patient. Ce canal permet le couplage entre l'excitation et la contraction musculaire. Ses défauts conduisent à diverses myopathies dont la myopathie à cores. Le patient présentait une hypotonie néonatale, une scoliose et des défauts respiratoires, et n'a jamais acquis la marche. J'ai dessiné des oligonucléotides, je les ai transfectés dans les cellules du patient en culture et ainsi montré par RT PCR que le saut du pseudo exon était possible. Afin d'optimiser l'efficacité pour pouvoir évaluer la restauration au niveau protéique et fonctionnel, j'ai développé un lentivirus exprimant une cassette U7 SmOPT avec les AON choisis. Après transduction des cellules, j'ai pu montrer que le saut du pseudo exon permettait le retour de la protéine et de sa fonctionnalité, cette approche pourrait donc permettre une correction chez le patient.Pour le deuxième cas, j'ai tenté de corriger une mutation du gène OCRL. Cette mutation crée un site donneur d'épissage dans l'intron 4 du gène OCRL et active un site accepteur d'épissage 66 nucléotides en amont. L'inclusion du pseudo exon induit la chute du taux de transcrit OCRL par un mécanisme de "Non sense mediated mRNA Decay". OCRL est une phosphatidyl inositol 5 Phosphatase permettant de réguler la quantité de Ptd Ins(4,5)P2 dans la cellule. Les défauts dans OCRL sont responsables d'une pathologie multisystémique, le syndrome de Lowe. J'ai pu obtenir des fibroblastes cutanés du patient. J'ai transfecté ces cellules avec des AONs choisis pour permettre un saut de l'exon pathogène. J'ai ensuite intégré la séquence des AONs efficaces dans un lentivirus U7. J'ai transduit les cellules du patient en culture et observé un retour de la protéine et un retour de l'activité enzymatique, cette approche pourrait donc théoriquement permettre une correction chez le patient.Ces deux travaux sont les premières preuves de principes de thérapie par modulation de l'épissage pour les myopathies congénitales et pour le syndrome de Lowe. Ils ouvrent la voie à des perspectives de traitement pour ces maladies génétiques. / After transcription, the pre mRNA will undergo different maturation step before getting out of the nucleus for translation. One of these step of maturation is the splicing. It allows to concatenate the coding sequences of the mRNA (the exons) and induces the exclusion of the non coding sequences (the introns).Genetics mutations can lead to splicing defects. These defects could be intron retention, exon skipping and exonisation of intronic sequences called pseudo exons.My thesis work was to evaluate the exon skipping therapy to correct these exonisation. I focuses on two diseases: core myopathy and Lowe syndrome.For the first one, my interest was on a mutation in the 101 th intron of RYR1 gene. This mutation creates a splicing donor site wich unveils a cryptic acceptor site. This leads to the inclusion of a 99 nucleotides pseudo exon. This inclusion induces a decrease of the quantity of the calcium channel RyR1 in the patient cells. This channel allows the excitation-contraction coupling, and therefore the muscular contraction. Defects in this channel lead to different myopathies (eg. core myopathy). The patient present at birth a major neonatal hypotonia, scoliosis and respiratory defects. He has never walked. I designed oligonucleotides (AON), transfected them in the cultured patient cells and showed by RT PCR that exon skipping was possible. In order to optimise the efficiency and to evaluate the rescue at a protein level and at a fonctionnal level, I devellopped a lentivirus which express a U7 Sm OPT cassette with the choosen AONs. After cell transduction, I have shown that exon skipping allowed the rescue of the protein and of its functionnality. This approach could permit a genetic correction for the patientFor the second case, I have tried to correct an OCRL mutation. This upstream creates a splicing donor site and unveils an acceptor site 66 nucleotides before. This leads to the inclusion of a pseudo exon which induces a severe decrease of OCRL transcripts level due to a "non sense mediated mRNA Decay". OCRL is a phosphatidyl inositol 5 Phosphatase, which regulates the Ptd Ins(4,5)P2 pool in the cell. OCRL defects induces a multi systemic disease the Lowe syndrome. I obtained patient cutaneous fibroblasts. I transfected these cells with choosen AONs to correct the splicing defect. I integrated the AONs sequence into a U7 lentiviral cassette. I transduced the cultured patient cells and observed a rescue of the protein with a rescue of its activity. This approach could, theoritically permit a correction in the patient.These two studies are the first proof of concept of splicing modulation therapy for congenital myopathy and for Lowe syndrome. This work offers a lot of perspective for the tratment of these genetic illness
|
3 |
Investigation of pathophysiological mechanism in induced pluripotent stem cell-derived cardiomyocytes from CPVT patientsLuo, Xiaojing 12 April 2022 (has links)
In adult CMs, ryanodine receptor 2 (RYR2) is an indispensable Ca2+ release channel that ensures the integrity of excitation-contraction (E-C) coupling, which is fundamental for every heartbeat. However, the role and importance of RYR2 during human embryonic cardiac development are still poorly understood. In this study, after the knockout of RYR2 gene (RYR2–/–), induced pluripotent stem cells (iPSCs) were able to differentiate into cardiomyocytes (CMs) with an efficiency similar to control iPSCs (Ctrl-iPSCs); however, the survival of iPSC-CMs was markedly affected by the lack of functional RYR2. While Ctrl-iPSC-CMs exhibited regular Ca2+ handling, significantly reduced frequency and intense abnormalities of Ca2+ transients were observed in RYR2–/–-iPSC-CMs. Ctrl-iPSC-CMs displayed sensitivity to extracellular calcium ([Ca2+]o) and caffeine in a concentration-dependent manner, while RYR2–/–-iPSC-CMs showed inconsistent reactions to [Ca2+]o and were insensitive to caffeine, indicating there is no RYR2-mediated Ca2+ release from the sarcoplasmic reticulum (SR). Instead, the compensatory mechanism for Ca2+ handling in RYR2–/–-iPSC-CMs is partially mediated by the Inositol 1,4,5-trisphosphate receptor (IP3R). Similar to Ctrl-iPSC-CMs, SR Ca2+ refilling in RYR2–/–-iPSC-CMs is mediated by sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Additionally, RYR2–/–-iPSC-CMs showed a decreased beating rate and a reduced L-type Ca2+ current (ICaL) density. These findings demonstrate that RYR2 is not required for CM lineage commitment but is important for CM survival and contractile function. IP3R-mediated Ca2+ release is one of the major compensatory mechanisms for Ca2+ cycling in human CMs with the RYR2 deficiency. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a life-threatening inherited arrhythmogenic disorder. RYR2 mutations are the genetic cause of CPVT Type 1. So far, the pathogenic mechanism of how RYR2 mutations remodel cardiac rhythm remains controversial, because all existing hypotheses cannot independently and universally represent the mechanism behind CPVT. Patient-specific iPSCs offer a unique opportunity for CPVT modeling and investigation in vitro. In this study, the effects of four different RYR2 mutations (R420W, A2254C, E4076K, and H4742Y) on cardiac Ca2+ handling were examined individually. The R420W mutation in CPVTa-iPSC-CMs showed no effect on the amplitude of paced Ca2+ transients but led to an increased Ca2+ leak and a decreased SR Ca2+ content. Moreover, CPVTa-iPSC-CMs presented an enhanced sensitivity to [Ca2+]o and caffeine but a lower ICaL density. Compared to Ctrl cells, CPVTb-iPSC-CMs carrying the A2254V mutation displayed Ca2+ transients with smaller amplitude and higher frequency. More importantly, CPVTb-iPSC-CMs showed remarkably severe Ca2+ leak and unaltered SR Ca2+ content. The A2254V mutation also enhanced the sensitivity of iPSC-CMs to [Ca2+]o and caffeine. Interestingly, the ICaL density was found higher in CPVTb-iPSC-CMs. As for the E4076K mutation, it caused a reduction in both amplitude and frequency of Ca2+ transients in CPVTc-iPSC-CMs. In addition, the sensitivity to [Ca2+]o was diminished in CPVTc-iPSC-CMs, while the caffeine sensitivity and ICaL density were not changed. Regarding the H4742Y mutation, it led to a reduction of Ca2+ transient amplitude. In addition, CPVTd-iPSC-CMs manifested unique SR Ca2+ leak, which was resistant to tetracaine, suggesting a conformational remodeling of the H4742Y-mutated RYR2. Furthermore, CPVTd-iPSC-CMs also showed enhanced sensitivity to [Ca2+]o and caffeine, although the ICaL density was comparable to Ctrl-iPSC-CMs. In summary, the A2254V variation presented a typical gain-of-function mutation, rendering the RYR2 hyperactive, while the E4076K variation was identified as a loss-of-function mutation, leading to hypoactive RYR2. R420W and H4742Y mutations did not enhance or suppress the activity of RYR2. However, by destabilizing the N-terminal domain (NTD) of RYR2, the R420W mutation caused Ca2+ leak via the mutant channel, which could be blocked by RYR2 inhibitor. As for the H4742Y mutation, it led to a consistent and inhibitor-resistant Ca2+ leak via RYR2, suggesting a structural remodeling of RYR2 that disturbs complete closure of the channel. These results confirmed the importance of RYR2 on the maintenance of Ca2+ handling and gained evidence for the theory that the underlying mechanisms of CPVT caused by mutations in RYR2 should be mutation-specific rather than unified. This study suggests hiPSC-CMs as a suitable platform for modeling cardiac arrhythmogenic disease, interpreting potential molecular and pathophysiological mechanisms, testing new therapeutic compounds, and guiding mechanism-specific therapy.:Abbreviations V
List of figures VIII
List of tables X
1 Introduction 1
1.1 Human induced pluripotent stem cells 1
1.1.1 Generation and characteristics of human induced pluripotent stem cells 1
1.1.2 Differentiation of hiPSCs into cardiomyocytes 3
1.1.3 Modeling of inherited cardiac disease with hiPSCs 4
1.2 Catecholaminergic polymorphic ventricular tachycardia 7
1.2.1 Clinical characteristics and diagnosis of CPVT 7
1.2.2 Genetic background of CPVT 8
1.2.3 Clinical descriptions of CPVT patients recruited in this study 10
1.2.4 Patient-specific iPSC-CMs recapitulate the phenotypes of CPVT in vitro 10
1.3 Cardiac excitation-contraction coupling 11
1.3.1 Cardiac action potential 12
1.3.2 Ca2+ homeostasis in cardiomyocytes 14
1.3.2.1 Ca2+ influx via L-type Ca2+ channel 14
1.3.2.2 Initiation and termination of SR Ca2+ release 15
1.3.2.3 Ca2+ removal from cytosol 17
1.3.3 Cardiomyocyte contraction 20
1.4 Cardiac ryanodine receptor 21
1.4.1 Distribution and classification of RYRs 22
1.4.2 Regulation of RYR2 23
1.4.2.1 Cytosolic Ca2+ 23
1.4.2.2 Luminal Ca2+ 24
1.4.2.3 Phosphorylation by PKA and CaMKII 25
1.4.2.4 Calmodulin 27
1.4.2.5 Caffeine 27
1.4.3 Pathophysiological mechanisms of CPVT associated with RYR2 mutations 28
2 Aims of this study 33
3 Materials and methods 34
3.1 Materials 34
3.1.1 Cells 34
3.1.2 Laboratory devices and experimental hardware 34
3.1.3 Disposable items 36
3.1.4 Chemicals, solutions, and buffers for physiological and molecular experiment 36
3.1.5 Antibodies 40
3.1.6 Primers 41
3.1.7 Chemicals, media and solutions used for cell culture 42
3.1.8 Software 44
3.2 Methods 44
3.2.1 Cell culture 44
3.2.1.1 Preparation of glass coverslips for cell culture 44
3.2.1.2 Coating of plates and dishes 44
3.2.1.3 Cultivation of iPSCs with feeder-free method 45
3.2.1.4 Cryopreservation and thawing of iPSCs 45
3.2.1.5 Spontaneous differentiation of iPSCs in vitro 45
3.2.1.6 Directed differentiation of iPSCs into cardiomyocytes 46
3.2.1.7 First digestion of iPSC-CMs 46
3.2.1.8 Cryopreservation and thawing of iPSC-CMs 46
3.2.1.9 Time-dependent proliferation analysis of iPSC-CMs 47
3.2.1.10 Second digestion of iPSC-CMs 47
3.2.1.11 Collection of cell pellets for molecular experiment 47
3.2.2 Cell viability assay 48
3.2.3 Gene expression analyses 48
3.2.3.1 RNA isolation 48
3.2.3.2 Reverse transcription reaction 48
3.2.3.3 Polymerase chain reaction 49
3.2.3.4 Agarose gel electrophoresis 49
3.2.4 Protein expression analyses 49
3.2.4.1 Western blot 49
3.2.4.1.1 Lysis of cultured cells 49
3.2.4.1.2 SDS-polyacrylamide gel electrophoresis 50
3.2.4.1.3 Transfer and detection of proteins 50
3.2.4.2 Flow cytometry 51
3.2.4.3 Immunofluorescence staining 51
3.2.5 Calcium imaging 51
3.2.5.1 Measurement of spontaneous Ca2+ transients 52
3.2.5.2 Evaluation of diastolic SR Ca2+ leak and SR Ca2+ content 52
3.2.5.3 Assessment of iPSC-CM sensitivity to [Ca2+]o 53
3.2.5.4 Quantification of iPSC-CM response to caffeine 53
3.2.6 Patch-clamp 53
3.2.6.1 Preparation of agar salt bridge 53
3.2.6.2 Assessment of liquid junction 53
3.2.6.3 Measurement of action potential and L-type calcium current 54
3.2.7 Statistical analysis 54
4 Results 55
4.1 IP3R-mediated SR Ca2+ release partially restores the impaired Ca2+ handling in iPSC-CMs with RYR2 deficiency 55
4.1.1 Loss of RYR2 does not alter the pluripotency of RYR2–/–-iPSCs 55
4.1.2 Loss of RYR2 leads to increased death of RYR2–/–-iPSC-CMs 56
4.1.3 Loss of RYR2 does not affect the expression of IP3R in iPSC-CMs 58
4.1.4 RYR2–/–-iPSC-CMs show abnormal Ca2+ transients 60
4.1.5 The sensitivity of RYR2–/–-iPSC-CMs to [Ca2+]o and caffeine is changed 62
4.1.6 IP3R is critical for the generation Ca2+ transients in RYR2–/–-iPSC-CMs 63
4.1.7 SERCA-mediated SR Ca2+ uptake is crucial for the Ca2+ handling in both Ctrl- and RYR2–/–-iPSC-CMs 65
4.1.8 RYR2–/–-iPSC-CMs display abnormal action potentials 66
4.2 Investigation of the impaired function of RYR2 in CPVTa-iPSC-CMs 69
4.2.1 The R420W mutation leads to increased SR Ca2+ leak and decreased SR Ca2+ content 69
4.2.2 The R420W mutation leads to an enhanced sensitivity of iPSC-CMs to [Ca2+]o 70
4.2.3 CPVTa-iPSC-CMs shows increased sensitivity to caffeine 71
4.2.4 CPVTa-iPSC-CMs show reduced ICaL density 72
4.3 Investigation of the impaired function of RYR2 in CPVTb-iPSC-CMs 74
4.3.1 CPVTb-iPSC-CMs show abnormal Ca2+ transients 74
4.3.2 The A2254V mutation intensifies the SR Ca2+ leak in iPSC-CMs 75
4.3.3 The A2254V mutation enhances the sensitivity of iPSC-CMs to [Ca2+]o 76
4.3.4 The A2254V mutation increases the sensitivity of iPSC-CMs to caffeine 78
4.3.5 CPVTb-iPSC-CMs show increased ICaL density 78
4.4 Investigation of the impaired function of RYR2 in CPVTc-iPSC-CMs 79
4.4.1 CPVTc-iPSC-CMs show abnormal Ca2+ transients 79
4.4.2 The E4076K mutation shows no effect on the SR Ca2+ leak and content 80
4.4.3 The E4076K mutation diminishes the sensitivity of iPSC-CMs to [Ca2+]o 81
4.4.4 The E4076K mutation shows almost no effect on the response of iPSC-CMs to caffeine 82
4.4.5 The E4076K mutation does not alter the ICaL density in iPSC-CMs 83
4.5 Investigation of the impaired function of RYR2 in CPVTd-iPSC-CMs 84
4.5.1 CPVTd-iPSC-CMs show abnormal Ca2+ transients 84
4.5.2 The H4742Y mutation leads to a tetracaine-resistant Ca2+ leak in iPSC-CMs 84
4.5.3 The H4742Y mutation improves the sensitivity of iPSC-CMs to [Ca2+]o 86
4.5.4 The H4742Y mutation enhances the response of iPSC-CMs to caffeine 87
4.5.5 The H4742Y mutation alters the gating properties of LTCC in iPSC-CMs 88
5 Discussion 90
5.1 IP3R-mediated compensatory mechanism for Ca2+ handling in iPSC-CMs with RYR2 deficiency 90
5.2 Pathophysiological mechanisms of RYR2 mutation-related CPVT are mutation-specific 93
5.2.1 Dysfunctional Ca2+ handling caused by RYR2-R420W mutation 94
5.2.2 Dysfunctional Ca2+ handling caused by RYR2-A2254V mutation 96
5.2.3 Dysfunctional Ca2+ handling caused by RYR2-E4076K mutation 99
5.2.4 Dysfunctional Ca2+ handling caused by RYR2-H4742Y mutation 101
5.3 Conclusions and future perspectives 104
6 Summary 106
7 Zusammenfassung 108
8 References 111
9 Acknowledgements 131
10 Declaration 132
|
4 |
CaMKII-dependent regulation of ion channels and its role in cardiac arrhythmias / CaMKII-abhängige Regulation von Ionenkanälen und ihre Rolle bei kardialen ArrhythmienDybkova, Nataliya 03 July 2008 (has links)
No description available.
|
5 |
Adenovirus-mediated gene transfer of FK506-binding proteins FKBP12.6 and FKBP12 in failing and non-failing rabbit ventricular myocytes / Adenoviraler Gentransfer von FK506-bindenden Proteinen in insuffizienten und normalen Kaninchen ventrikulärer MyozytenZibrova, Darya 25 June 2004 (has links)
No description available.
|
6 |
Über die differentielle Regulation von Ionenkanälen in spezifischen Nanodomänen atrialer und ventrikulärer Kardiomyozyten / Differential Regulation of Ion Channels in Specific Nanodomains of Atrial and Ventricular CardiomyocytesBrandenburg, Sören 29 June 2017 (has links)
No description available.
|
Page generated in 0.0474 seconds