1 |
Genetic modification in CPVT patient specific induced pluripotent stem cells with CRISPR/Cas9Zimmermann, Maximilian 02 December 2019 (has links)
No description available.
|
2 |
Novel calmodulin variant p.E46K associated with severe CPVT produces robust arrhythmogenicity in human iPSC-derived cardiomyocytes / 重症CPVTを引き起こす新規カルモジュリン変異p.E46Kは、ヒトiPS細胞由来心筋細胞において重度な催不整脈性を示すGao, Jingshan 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24878号 / 医博第5012号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 萩原 正敏, 教授 湊谷 謙司, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
3 |
Induced pluripotent stem cell-derived cardiomyocytes as model for studying CPVT caused by mutations in RYR2Henze, Sarah 29 November 2016 (has links)
No description available.
|
4 |
Investigation of pathophysiological mechanism in induced pluripotent stem cell-derived cardiomyocytes from CPVT patientsLuo, Xiaojing 12 April 2022 (has links)
In adult CMs, ryanodine receptor 2 (RYR2) is an indispensable Ca2+ release channel that ensures the integrity of excitation-contraction (E-C) coupling, which is fundamental for every heartbeat. However, the role and importance of RYR2 during human embryonic cardiac development are still poorly understood. In this study, after the knockout of RYR2 gene (RYR2–/–), induced pluripotent stem cells (iPSCs) were able to differentiate into cardiomyocytes (CMs) with an efficiency similar to control iPSCs (Ctrl-iPSCs); however, the survival of iPSC-CMs was markedly affected by the lack of functional RYR2. While Ctrl-iPSC-CMs exhibited regular Ca2+ handling, significantly reduced frequency and intense abnormalities of Ca2+ transients were observed in RYR2–/–-iPSC-CMs. Ctrl-iPSC-CMs displayed sensitivity to extracellular calcium ([Ca2+]o) and caffeine in a concentration-dependent manner, while RYR2–/–-iPSC-CMs showed inconsistent reactions to [Ca2+]o and were insensitive to caffeine, indicating there is no RYR2-mediated Ca2+ release from the sarcoplasmic reticulum (SR). Instead, the compensatory mechanism for Ca2+ handling in RYR2–/–-iPSC-CMs is partially mediated by the Inositol 1,4,5-trisphosphate receptor (IP3R). Similar to Ctrl-iPSC-CMs, SR Ca2+ refilling in RYR2–/–-iPSC-CMs is mediated by sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Additionally, RYR2–/–-iPSC-CMs showed a decreased beating rate and a reduced L-type Ca2+ current (ICaL) density. These findings demonstrate that RYR2 is not required for CM lineage commitment but is important for CM survival and contractile function. IP3R-mediated Ca2+ release is one of the major compensatory mechanisms for Ca2+ cycling in human CMs with the RYR2 deficiency. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a life-threatening inherited arrhythmogenic disorder. RYR2 mutations are the genetic cause of CPVT Type 1. So far, the pathogenic mechanism of how RYR2 mutations remodel cardiac rhythm remains controversial, because all existing hypotheses cannot independently and universally represent the mechanism behind CPVT. Patient-specific iPSCs offer a unique opportunity for CPVT modeling and investigation in vitro. In this study, the effects of four different RYR2 mutations (R420W, A2254C, E4076K, and H4742Y) on cardiac Ca2+ handling were examined individually. The R420W mutation in CPVTa-iPSC-CMs showed no effect on the amplitude of paced Ca2+ transients but led to an increased Ca2+ leak and a decreased SR Ca2+ content. Moreover, CPVTa-iPSC-CMs presented an enhanced sensitivity to [Ca2+]o and caffeine but a lower ICaL density. Compared to Ctrl cells, CPVTb-iPSC-CMs carrying the A2254V mutation displayed Ca2+ transients with smaller amplitude and higher frequency. More importantly, CPVTb-iPSC-CMs showed remarkably severe Ca2+ leak and unaltered SR Ca2+ content. The A2254V mutation also enhanced the sensitivity of iPSC-CMs to [Ca2+]o and caffeine. Interestingly, the ICaL density was found higher in CPVTb-iPSC-CMs. As for the E4076K mutation, it caused a reduction in both amplitude and frequency of Ca2+ transients in CPVTc-iPSC-CMs. In addition, the sensitivity to [Ca2+]o was diminished in CPVTc-iPSC-CMs, while the caffeine sensitivity and ICaL density were not changed. Regarding the H4742Y mutation, it led to a reduction of Ca2+ transient amplitude. In addition, CPVTd-iPSC-CMs manifested unique SR Ca2+ leak, which was resistant to tetracaine, suggesting a conformational remodeling of the H4742Y-mutated RYR2. Furthermore, CPVTd-iPSC-CMs also showed enhanced sensitivity to [Ca2+]o and caffeine, although the ICaL density was comparable to Ctrl-iPSC-CMs. In summary, the A2254V variation presented a typical gain-of-function mutation, rendering the RYR2 hyperactive, while the E4076K variation was identified as a loss-of-function mutation, leading to hypoactive RYR2. R420W and H4742Y mutations did not enhance or suppress the activity of RYR2. However, by destabilizing the N-terminal domain (NTD) of RYR2, the R420W mutation caused Ca2+ leak via the mutant channel, which could be blocked by RYR2 inhibitor. As for the H4742Y mutation, it led to a consistent and inhibitor-resistant Ca2+ leak via RYR2, suggesting a structural remodeling of RYR2 that disturbs complete closure of the channel. These results confirmed the importance of RYR2 on the maintenance of Ca2+ handling and gained evidence for the theory that the underlying mechanisms of CPVT caused by mutations in RYR2 should be mutation-specific rather than unified. This study suggests hiPSC-CMs as a suitable platform for modeling cardiac arrhythmogenic disease, interpreting potential molecular and pathophysiological mechanisms, testing new therapeutic compounds, and guiding mechanism-specific therapy.:Abbreviations V
List of figures VIII
List of tables X
1 Introduction 1
1.1 Human induced pluripotent stem cells 1
1.1.1 Generation and characteristics of human induced pluripotent stem cells 1
1.1.2 Differentiation of hiPSCs into cardiomyocytes 3
1.1.3 Modeling of inherited cardiac disease with hiPSCs 4
1.2 Catecholaminergic polymorphic ventricular tachycardia 7
1.2.1 Clinical characteristics and diagnosis of CPVT 7
1.2.2 Genetic background of CPVT 8
1.2.3 Clinical descriptions of CPVT patients recruited in this study 10
1.2.4 Patient-specific iPSC-CMs recapitulate the phenotypes of CPVT in vitro 10
1.3 Cardiac excitation-contraction coupling 11
1.3.1 Cardiac action potential 12
1.3.2 Ca2+ homeostasis in cardiomyocytes 14
1.3.2.1 Ca2+ influx via L-type Ca2+ channel 14
1.3.2.2 Initiation and termination of SR Ca2+ release 15
1.3.2.3 Ca2+ removal from cytosol 17
1.3.3 Cardiomyocyte contraction 20
1.4 Cardiac ryanodine receptor 21
1.4.1 Distribution and classification of RYRs 22
1.4.2 Regulation of RYR2 23
1.4.2.1 Cytosolic Ca2+ 23
1.4.2.2 Luminal Ca2+ 24
1.4.2.3 Phosphorylation by PKA and CaMKII 25
1.4.2.4 Calmodulin 27
1.4.2.5 Caffeine 27
1.4.3 Pathophysiological mechanisms of CPVT associated with RYR2 mutations 28
2 Aims of this study 33
3 Materials and methods 34
3.1 Materials 34
3.1.1 Cells 34
3.1.2 Laboratory devices and experimental hardware 34
3.1.3 Disposable items 36
3.1.4 Chemicals, solutions, and buffers for physiological and molecular experiment 36
3.1.5 Antibodies 40
3.1.6 Primers 41
3.1.7 Chemicals, media and solutions used for cell culture 42
3.1.8 Software 44
3.2 Methods 44
3.2.1 Cell culture 44
3.2.1.1 Preparation of glass coverslips for cell culture 44
3.2.1.2 Coating of plates and dishes 44
3.2.1.3 Cultivation of iPSCs with feeder-free method 45
3.2.1.4 Cryopreservation and thawing of iPSCs 45
3.2.1.5 Spontaneous differentiation of iPSCs in vitro 45
3.2.1.6 Directed differentiation of iPSCs into cardiomyocytes 46
3.2.1.7 First digestion of iPSC-CMs 46
3.2.1.8 Cryopreservation and thawing of iPSC-CMs 46
3.2.1.9 Time-dependent proliferation analysis of iPSC-CMs 47
3.2.1.10 Second digestion of iPSC-CMs 47
3.2.1.11 Collection of cell pellets for molecular experiment 47
3.2.2 Cell viability assay 48
3.2.3 Gene expression analyses 48
3.2.3.1 RNA isolation 48
3.2.3.2 Reverse transcription reaction 48
3.2.3.3 Polymerase chain reaction 49
3.2.3.4 Agarose gel electrophoresis 49
3.2.4 Protein expression analyses 49
3.2.4.1 Western blot 49
3.2.4.1.1 Lysis of cultured cells 49
3.2.4.1.2 SDS-polyacrylamide gel electrophoresis 50
3.2.4.1.3 Transfer and detection of proteins 50
3.2.4.2 Flow cytometry 51
3.2.4.3 Immunofluorescence staining 51
3.2.5 Calcium imaging 51
3.2.5.1 Measurement of spontaneous Ca2+ transients 52
3.2.5.2 Evaluation of diastolic SR Ca2+ leak and SR Ca2+ content 52
3.2.5.3 Assessment of iPSC-CM sensitivity to [Ca2+]o 53
3.2.5.4 Quantification of iPSC-CM response to caffeine 53
3.2.6 Patch-clamp 53
3.2.6.1 Preparation of agar salt bridge 53
3.2.6.2 Assessment of liquid junction 53
3.2.6.3 Measurement of action potential and L-type calcium current 54
3.2.7 Statistical analysis 54
4 Results 55
4.1 IP3R-mediated SR Ca2+ release partially restores the impaired Ca2+ handling in iPSC-CMs with RYR2 deficiency 55
4.1.1 Loss of RYR2 does not alter the pluripotency of RYR2–/–-iPSCs 55
4.1.2 Loss of RYR2 leads to increased death of RYR2–/–-iPSC-CMs 56
4.1.3 Loss of RYR2 does not affect the expression of IP3R in iPSC-CMs 58
4.1.4 RYR2–/–-iPSC-CMs show abnormal Ca2+ transients 60
4.1.5 The sensitivity of RYR2–/–-iPSC-CMs to [Ca2+]o and caffeine is changed 62
4.1.6 IP3R is critical for the generation Ca2+ transients in RYR2–/–-iPSC-CMs 63
4.1.7 SERCA-mediated SR Ca2+ uptake is crucial for the Ca2+ handling in both Ctrl- and RYR2–/–-iPSC-CMs 65
4.1.8 RYR2–/–-iPSC-CMs display abnormal action potentials 66
4.2 Investigation of the impaired function of RYR2 in CPVTa-iPSC-CMs 69
4.2.1 The R420W mutation leads to increased SR Ca2+ leak and decreased SR Ca2+ content 69
4.2.2 The R420W mutation leads to an enhanced sensitivity of iPSC-CMs to [Ca2+]o 70
4.2.3 CPVTa-iPSC-CMs shows increased sensitivity to caffeine 71
4.2.4 CPVTa-iPSC-CMs show reduced ICaL density 72
4.3 Investigation of the impaired function of RYR2 in CPVTb-iPSC-CMs 74
4.3.1 CPVTb-iPSC-CMs show abnormal Ca2+ transients 74
4.3.2 The A2254V mutation intensifies the SR Ca2+ leak in iPSC-CMs 75
4.3.3 The A2254V mutation enhances the sensitivity of iPSC-CMs to [Ca2+]o 76
4.3.4 The A2254V mutation increases the sensitivity of iPSC-CMs to caffeine 78
4.3.5 CPVTb-iPSC-CMs show increased ICaL density 78
4.4 Investigation of the impaired function of RYR2 in CPVTc-iPSC-CMs 79
4.4.1 CPVTc-iPSC-CMs show abnormal Ca2+ transients 79
4.4.2 The E4076K mutation shows no effect on the SR Ca2+ leak and content 80
4.4.3 The E4076K mutation diminishes the sensitivity of iPSC-CMs to [Ca2+]o 81
4.4.4 The E4076K mutation shows almost no effect on the response of iPSC-CMs to caffeine 82
4.4.5 The E4076K mutation does not alter the ICaL density in iPSC-CMs 83
4.5 Investigation of the impaired function of RYR2 in CPVTd-iPSC-CMs 84
4.5.1 CPVTd-iPSC-CMs show abnormal Ca2+ transients 84
4.5.2 The H4742Y mutation leads to a tetracaine-resistant Ca2+ leak in iPSC-CMs 84
4.5.3 The H4742Y mutation improves the sensitivity of iPSC-CMs to [Ca2+]o 86
4.5.4 The H4742Y mutation enhances the response of iPSC-CMs to caffeine 87
4.5.5 The H4742Y mutation alters the gating properties of LTCC in iPSC-CMs 88
5 Discussion 90
5.1 IP3R-mediated compensatory mechanism for Ca2+ handling in iPSC-CMs with RYR2 deficiency 90
5.2 Pathophysiological mechanisms of RYR2 mutation-related CPVT are mutation-specific 93
5.2.1 Dysfunctional Ca2+ handling caused by RYR2-R420W mutation 94
5.2.2 Dysfunctional Ca2+ handling caused by RYR2-A2254V mutation 96
5.2.3 Dysfunctional Ca2+ handling caused by RYR2-E4076K mutation 99
5.2.4 Dysfunctional Ca2+ handling caused by RYR2-H4742Y mutation 101
5.3 Conclusions and future perspectives 104
6 Summary 106
7 Zusammenfassung 108
8 References 111
9 Acknowledgements 131
10 Declaration 132
|
Page generated in 0.0645 seconds