• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 29
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 27
  • 27
  • 23
  • 22
  • 21
  • 17
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Bioavailability of cadmium, copper, nickel and zinc in soils treated with biosolids and metal salts

Black, Amanda January 2010 (has links)
It is widely accepted that bioavailability, rather than total soil concentration, is preferred when assessing the risk associated with metal contamination. Despite this, debate continues on what constitutes a bioavailable pool and how to best predict bioavailability, especially in relation to crop plants. The overall aim of this thesis was to assess and validate measures of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) bioavailability in a range of soils amended with metal salts and biosolids. Six potential measures of bioavailability were investigated and compared: total metal; 0.04 M EDTA extraction; 0.05 M Ca(NO₃)₂ extraction; soil solution extracted using rhizon probes; effective solution concentration (CE) determined using diffusive gradients in thin films (DGT); and modelled free ion activities (WHAM 6.0). These were compared to shoot metal concentrations obtained from plants grown in three soils with contrasting properties treated with biosolids and metal salts. The first study involved a wheat seedling (Triticum aestivum) assay carried out under controlled environmental conditions on incubated soils treated with metal salts and biosolids. Results showed that the presence of biosolids resulted in increases of DOC, salinity, Ca and Mg in soil solution as well as total concentrations of Cu and Zn, dry matter was also adversely affected by increased levels of salinity. The addition of biosolids did not significantly alter the extractability or solubility of Cd, Cu, Ni and Zn although concentrations of Cd in shoots were significantly lower in plants grown in biosolids amended soils compared with unamended soils. The second study involved a field experiment that used 20 cm diameter by 30 cm deep soil monoliths of the same three soils treated with metals and biosolids, and perennial ryegrass (Lolium perenne) was grown for 24 months. Results revealed the addition of biosolids significantly increased the amount of DOC, salinity, Ca and Mg in solution. The presence of biosolids also significantly altered the bioavailability of Cd, Cu, Ni and Zn, as measured by soil solution, CE and free ion activity. However, this change had little effect on plant metal uptake. The length of time following treatment application had the greatest effect on soil chemistry and metal availability, resulting in pH decreases and increases in DOC, soil solution salinity, Ca and Mg. The free ion activities of each metal increased with time, as did soil solution Cd and Zn and CE-Cu, with results for Zn indicative of migration through the soil profile with time. Plant uptake of Ni and Zn also changed with time. Nickel concentrations in shoots decreased, while concentrations of Zn in shoots increased. The findings from the two studies demonstrated that biosolids increased the amount of DOC, salinity, Ca and Mg present in soil solution. In the lysimeter study measures of metal availability were affected in soils amended with biosolids, but this did not effect shoot concentrations. The overall predictive strengths of the six potential measures of bioavailability was investigated using results from the previously described experiments and related studies carried out by ESR and Lincoln University using nine different soils amended with combinations of biosolids and metal salts. Of the four metals Ni provided the strongest correlations between metal bioavailability and shoot concentrations, with 0.05 M Ca(NO₃)₂ extraction giving the strongest relationship for Ni concentrations in shoots (r² = 0.73). This suggests that the solubility of Ni is highly indicative of shoot concentrations and that Ca(NO₃)₂ is a robust measure of Ni bioavailability. In addition Ca(NO₃)₂ provided the best estimate of Zn bioavailability (r² = 0.65), and CE-Cd provided the best measure of Cd bioavailability, although it could only describe 47 % of shoot Cd concentration. Results for Cu were typical of previously described studies as assays of Cu availability are almost always poorly correlated with shoot concentrations, with total Cu having the strongest relationship (r² = 0.34). Methods based on the extractability and solubility of Cu in soils were poor indicators of Cu concentration in shoots. Overall, the addition of biosolids did not alter the outcome of these bioavailability assays, and results indicated that total metal concentrations present in the soils and biosolids matrix, plus length of time since soil treatment, had a greater affect on metal bioavailability.
132

A comparison of the cool season activity of two white clover cultivars

Smetham, M. L. January 1972 (has links)
Although New Zealand is fortunate in having a climate mild enough to allow some growth of pasture in winter even in the extreme south of the South Island (Duffy, 1971), growth is nevertheless considerably less than in spring and summer. O’Connor et al, (1968) point out that at Lincoln, Canterbury, winter production from a New Zealand Certified Grasslands Ruanui Perennial ryegrass (Lolium perenne c.v.) and New Zealand Certified Grasslands Huia white clover (Trifolium repens c.v.) sward is at best only 8% of the mean total annual dry matter (D.M.) production. A similar seasonal pattern is shown by irrigated pastures (Rickard, 1968), as well as pastures in the milder North Island of New Zealand (O’Connor and Vartha, pers comm.). Stocking of grazing animals is normally related to the growth rate of pastures in the spring, with conserved hay or silage, plus specially grown greenfeed or root crops being fed if necessary to offset the winter feed deficit. However on hill country too steep for tractor cultivation, cropping and conservation are not possible. Animals have to rely upon in situ grazing of native or dominant browntop (Agrostis tenuis) swards which may not have been improved by the aerial introduction of clovers. In an unimproved state, the quality and quantity of the herbage grown on such areas are low, Molloy (1966) have discussed clover introduction into native swards and the notably beneficial result this has on stock thrift, particularly during the winter period. Considerably better growth rates of stock grazing legumes rather than grasses have been noted by many authors including Ulyatt, (1971), and McLean et al (1962); this superiority being due largely to the greater digestible organic matter intake and higher ratio of soluble to insoluble carbohydrate associated with the herbage of legumes (Ulyatt, 1971). Consequently the presence of clover, and the winter activity of this, have an important influence on the productivity of steep hill country during winter. An increase of winter activity is also desirable, but not essential, in clover associated with flat or gently rolling pastures. The main pasture legume used in New Zealand has, in the past, been the white clover cultivar Huia. Whilst since 1945 selection and breeding of ryegrasses has brought about a very considerable improvement in the winter or cool season activity of these (Corkill, 1966), no legume cultivar having an increased level of cool-season activity has been released to commerce in New Zealand over the same period to date. Breeding for increased winter growth has been an objective of the Grasslands Division Plant Breeding Section for many years (Barclay, 1960). Since 1957, breeding and selection work has been proceeding with the objective of increasing the winter growth of the New Zealand Certified Grasslands white clover cultivar – Huia (henceforth to be referred to as Huia) without sacrificing the moderately good summer growth of this strain, (Barclay, 1969). Seed of a promising cultivar selected during the course of this work – New Zealand Grasslands 4700 white clover, (henceforth to be referred to as 4700) became available for testing in 1967. The investigation to be reported here aimed to measure the cool-season activity of 4700 by comparison with that of Huia, at the same time elucidating if possible the factors controlling this growth.
133

Water use efficiency of six dryland pastures in Canterbury

Tonmukayakul, Nop January 2009 (has links)
The annual and seasonal water use efficiency of six pasture combinations were calculated from the ‘MaxClover’ Grazing Experiment at Lincoln University. Pastures have been established for six years and are grazed by best management practices for each combination. Measurements for this study are from individual plots of four replicates of ryegrass (RG)/white clover (Wc), cocksfoot (CF)/Wc; CF/balansa (Bal) clover; CF/Caucasian (Cc) clover; CF/subterranean (Sub) clover or lucerne. Water extraction measurements showed soils for all dryland pastures had a similar plant available water content of 280±19.8 mm. Dry matter measurements of yield, botanical composition and herbage quality were assessed from 1 July 2008 until 30 June 2009. Lucerne had the highest annual yield of 14260 kg DM/ha/y followed by the CF/Sub at 9390 kg DM/ha/y and the other grass based pastures at ≤ 6900 kg DM/ha/y. All pastures used about 670±24.4 mm/y of water for growth. Lucerne had the highest annual water use efficiency (WUE) of 21 kg DM/ha/mm/y of water used (total yield/total WU). The WUE of CF/Sub was the second highest at 15 kg DM/ha/mm/y, and the lowest was CF/Wc at 9 kg DM/ha/mm/y. The CF/Sub pastures had the highest total legume content of all grass based pastures at 21% and as a consequence had the highest annual nitrogen yield of 190 kg N/ha. This was lower than the monoculture of lucerne (470 kg N/ha). Ryegrass/white clover had the highest total weed component in all pastures of 61%. For dryland farmers spring is vital for animal production when soil temperatures are rising and moisture levels are high. The water use efficiency at this time is important to maximize pasture production. In spring lucerne produced 8730 kg DM/ha, which was the highest dry matter yield of all pastures. The CF/Sub produced the second highest yield of 6100 kg/DM/ha. When calculated against thermal time, CF/Sub grew 5.9 kg DM/ºCd compared with lucerne at 4.9 kg DM/ºCd. The higher DM yield from lucerne was from an extra 400 ºCd of growth. The highest seasonal WUE of all pastures occurred in the spring growing period. Linear regressions forced through the origin, showed lucerne (1/7/08-4/12/08) had a WUE of 30 kg DM/ha/mm (R2=0.98). Of the grass based pastures, CF/Sub produced 18 kg DM/ha/mm (R2=0.98) from 1/7 to 10/11/08 from 270 mm of water used. The lowest spring WUE was 13.5 kg DM/ha/mm by CF/Bal pastures which was comparable to the 14.3±1.42 kg DM/ha/mm WUE of CF/Wc, CF/Cc and RG/Wc pastures. During the spring, CF/Sub clover had the highest spring legume component of the grass based pastures at 42% and produced 120 kg N/ha. This was lower than the 288 kg N/ha from the monoculture of lucerne. Sub clover was the most successful clover which persisted with the cocksfoot. Based on the results from this study dryland farmers should be encouraged to maximize the potential of lucerne on farm, use cocksfoot as the main grass species for persistence, rather than perennial ryegrass, and use subterranean clover as the main legume species in cocksfoot based pastures. By increasing the proportion of legume grown the water use efficiency of a pasture can be improved. When pastures are nitrogen deficient the use of inorganic nitrogen may also improve pasture yields particularly in spring.
134

The Relationship between Biodiversity and Productivity in Permanent Grasslands and in Ley System / Die Verbindungen zwischen Diversität und Produktivität in der Grasland und in Ley-System

Assaf, Taher 14 May 2008 (has links)
No description available.
135

Research on heavy metals in roadside and evaluation of heir influence on the environment / Sunkiųjų metalų pakelėse tyrimai ir įtakos aplinkai vertinimas

Jankaitė, Audronė 04 December 2007 (has links)
Soil contamination with heavy metals is a problem of worldwide concern that is still unsolved. The analysis of the current methods of soil cleaning from heavy metals leads to conclusions that phytoremediation, i.e. soil decontamination by using plants, is one of the best methods. Although this method has not received a wide application yet and possibilities of its application are still being analysed, it is one of the most prospective soil cleaning methods due to low cost and a rather efficient cleaning of the upper surface of soil. Three kinds of Poaceae f. Species – Lolium perenne L., Poa pratensis L. and Festuca pratensis Huds. – have been chosen in this work for decontaminating soil from heavy metals. These plants were grown under artificial laboratory conditions in soil which was once and periodically contaminated with heavy metals. It was established that it is the Lolium perenne L. that most efficiently removes heavy metals and cleans soil. The results of experiments show that the selected grassy plants (perennial ryegrass, meadow-grass and fescue-grass) efficiently clean soil from heavy metals (copper, lead, manganese, zinc, nickel and chromium) when soil contains both low (0.5–120 mg/kg) and high (up to 6,850 mg/kg) concentrations of these metals. Since the perennial ryegrass absorbs the highest amount of heavy metals, the highest efficiency of soil cleaning is achieved using this plant, therefore, 80 % of the mixture of grassy plants was formed of the perennial... [to full text] / Dirvožemio tarša sunkiaisiais metalais visame pasaulyje aktuali problema iki šiol neturinti universalaus sprendimo. Išanalizavus šiuo metu dirvožemio valymui nuo sunkiųjų metalų naudojamus metodus, galima daryti išvadą, kad vienas iš tinkamiausių metodų yra fitoremediacija, t. y. dirvožemio valymas nuo teršalų panaudojant augalus. Šis metodas dar nėra plačiai taikomas ir jo taikymo galimybės dar tik tiriamos tačiau, tai vienas iš perspektyviausių dirvožemio valymo metodų dėl sąlyginai mažos kainos ir pakankamai efektyvaus paviršinio dirvožemio sluoksnio išvalymo. Atliktų eksperimentinių tyrimų rezultatai parodė, kad pasirinkta žolinė augalija – daugiametė svidrė, pievinė miglė ir tikrasis eraičinas efektyviai valo dirvožemį nuo sunkiųjų metalų (vario, švino, mangano, cinko, nikelio, chromo) tiek esant mažoms (0,5–120 mg/kg), tiek didelėms (iki 6850 mg/kg) jų koncentracijoms dirvožemyje. Kadangi daugiausiai sunkiųjų metalų iš dirvožemio sorbuoja svidrė, tai dirvožemio valymo efektyvumas naudojant šią žolinės augalijos rūšį yra efektyviausias ir sudarant žolinės augalijos mišinį 80  sudarė svidrė ir po 10  eraičinas bei miglė. Eksperimentų metu tirta, kaip sunkiųjų metalų mišinio koncentracijos kenkia hidrobiontams ir nustatyta, kad didinat sunkiųjų metalų mišinio koncentracijas (iki 0,198–5,12 g/l) jos tampa letalinėmis vaivorykštiniam upėtakiui, tuo pačiu ir kitiems vandens gyvūnams.Pagal tyrimų su vaivorykštiniais upėtakiais rezultatus nustatyta, kad stebimų... [toliau žr. visą tekstą]
136

Sunkiųjų metalų pakelėse tyrimai ir įtakos aplinkai vertinimas / Research on heavy metals in roadside and evaluation of their influence on the environment

Jankaitė, Audronė 04 December 2007 (has links)
Dirvožemio tarša sunkiaisiais metalais visame pasaulyje aktuali problema iki šiol neturinti universalaus sprendimo. Fitoremediacija – naujai atsirandanti ir daug žadanti technologija nestipriai užterštiems dirvožemiams valyti naudojant augalus. Šiame darbe dirvožemio valymui nuo sunkiųjų metalų pasirinktos trys žolinės augalijos rūšys – svidrė, miglė ir eraičinas, augintos modelinėmis laboratorinėmis sąlygomis vieną kartą ir periodiškai sunkiaisiais metalais teršiamuose dirvožemiuose. Nustatyta, kad geriausiai sunkiuosius metalus iš dirvožemio sorbuoja ir didžiausias dirvožemio valymo efektyvumas pasiekiamas naudojant svidrę. Augalijai sorbuojant sunkiuosius metalus iš dirvožemio dalis šių metalų (Cu, Cr, Zn, Pb, Mn, Ni) koncentruojasi žolinės augalijos šaknyse, tačiau didžioji dalis ten susikaupiančių metalų (iki 90 proc.) pereina į antžeminę augalo dalį. Didžiausios sunkiųjų metalų koncentracijos augale (iki 60 proc. ir daugiau) ir atitinkamai efektyviausias dirvožemio valymas nustatytas svidrės atveju, todėl sudarant mišinį didžiąją dalį (80 proc.) jame sudaro svidrė. Sunkiųjų metalų mišinys daro neigiamą įtaką vaivorykštinio upėtakio jauniklių fiziologiniams ir morfologiniams rodikliams, todėl didinat sunkiųjų metalų mišinio koncentracijas (iki 0,198–5,12 g/l) jos tampa letalinėmis vaivorykštiniams upėtakiams, tuo pačiu ir kitiems vandens gyvūnams. Pagal tyrimų su vaivorykštiniais upėtakiais rezultatus nustatyta, kad stebimų upėtakių, gyvenusių akvariume, užterštame 5,7... [toliau žr. visą tekstą] / Soil contamination with heavy metals is a problem of worldwide concern that is still unsolved. The analysis of the current methods of soil cleaning from heavy metals leads to conclusions that phytoremediation, i.e. soil decontamination by using plants, is one of the best methods. Although this method has not received a wide application yet and possibilities of its application are still being analysed, it is one of the most prospective soil cleaning methods due to low cost and a rather efficient cleaning of the upper surface of soil. Three kinds of Poaceae f. Species – Lolium perenne L., Poa pratensis L. and Festuca pratensis Huds. – have been chosen in this work for decontaminating soil from heavy metals. These plants were grown under artificial laboratory conditions in soil which was once and periodically contaminated with heavy metals. It was established that it is the Lolium perenne L. that most efficiently removes heavy metals and cleans soil. The results of experiments show that the selected grassy plants (perennial ryegrass, meadow-grass and fescue-grass) efficiently clean soil from heavy metals (copper, lead, manganese, zinc, nickel and chromium) when soil contains both low (0.5–120 mg/kg) and high (up to 6,850 mg/kg) concentrations of these metals. Since the perennial ryegrass absorbs the highest amount of heavy metals, the highest efficiency of soil cleaning is achieved using this plant, therefore, 80 % of the mixture of grassy plants was formed of the perennial... [to full text]
137

Chemical nature and plant availability of phosphorus present in soils under long-term fertilised irrigated pastures in Canterbury, New Zealand

Condron, Leo M. January 1986 (has links)
Soil P fractionation was used to examine changes in soil inorganic and organic P under grazed irrigated pasture in a long-term field trial at Winchmore in Mid-Canterbury. The soil P fractionation scheme used involved sequential extractions of soil with O.5M NaHCO₃ @ pH 8.5 (NaHCO₃ P), 0.1M NaOH (NaOH I P), 1M HCl (HCl P) and 0.1M NaOH (NaOH II P). The Winchmore trial comprised 5 treatments: control (no P since 1952), 376R (376 kg superphosphate ha⁻¹ yr⁻¹ 1952-1957, none since), 564R (564 kg superphosphate ha⁻¹ yr⁻¹ 1952-1957, none since) 188PA (188 kg superphosphate ha⁻¹ yr⁻¹ since 1952) and 376PA (376 kg superphosphate ha⁻¹ yr⁻¹ since 1952: Topsoil (0-7.5cm) samples taken from the different treatments in 1958, 1961, 1965, 1968, 1971, 1974 and 1977 were used in this study. Changes in soil P with time showed that significant increases in soil inorganic P occurred in the annually fertilised treatments (l88PA, 376PA). As expected, the overall increase in total soil inorganic P between 1958 and 1977 was greater in the 376PA treatment (159 µg P g⁻¹) than that in the 188PA treatment (37 µg P g⁻¹). However, the chemical forms of inorganic P which accumulated in the annually fertilised treatments changed with time. Between 1958 and 1971 most of the increases in soil inorganic P in these treatments occurred in the NaHCO₃ and NaOH I P fractions. On the other hand, increases in soil inorganic P in the annually fertilised treatments between 1971 and 1977 were found mainly in the HCl and NaOH II P fractions. These changes in soil P forms were attributed to the combined effects of lime addition in 1972 and increased amounts of sparingly soluble apatite P and iron-aluminium P in the single superphosphate applied during the 1970's. In the residual fertiliser treatments (376R, 564R) significant decreases in all of the soil inorganic P fractions (i.e. NaHCO₃ P, NaOH I P, HCl P, NaOH II p) occurred between 1958 and 1977 following the cessation of P fertiliser inputs in 1957. This was attributed to continued plant uptake of P accumulated in the soil from earlier P fertiliser additions. However, levels of inorganic P in the different soil P fractions in the residual fertiliser treatments did not decline to those in the control which indicated that some of the inorganic P accumulated in the soil from P fertiliser applied between 1952 and 1957 was present in very stable forms. In all treatments, significant increases in soil organic P occurred between 1958 and 1971. The overall increases in total soil organic P were greater in the annually fertilised treatments (70-86 µg P g⁻¹) than those in the residual fertiliser (55-64 µg P g⁻¹) and control (34 µg P g⁻¹) treatments which reflected the respective levels of pasture production in the different treatments. These increases in soil organic P were attributed to the biological conversion of native and fertiliser inorganic P to organic P in the soil via plant, animal and microbial residues. The results also showed that annual rates of soil organic P accumulation between 1958 and 1971 decreased with time which indicated that steady-state conditions with regard to net 'organic P accumulation were being reached. In the residual fertiliser treatments, soil organic P continued to increase between 1958 and 1971 while levels of soil inorganic P and pasture production declined. This indicated that organic P which accumulated in soil from P fertiliser additions was more stable and less available to plants than inorganic forms of soil P. Between 1971 and 1974 small (10-38 µg P g⁻¹) but significant decreases in total soil organic P occurred in all treatments. This was attributed to increased mineralisation of soil organic P as a result of lime (4 t ha⁻¹) applied to the trial in 1972 and also to the observed cessation of further net soil organic P accumulation after 1971. Liming also appeared to affect the chemical nature of soil organic P as shown by the large decreases in NaOH I organic P(78-88 µg P g⁻¹) and concomitant smaller increases in NaOH II organic P (53-65 µg P g⁻¹) which occurred in all treatments between 1971 and 1974. The chemical nature of soil organic P in the Winchmore long-term trial was also investigated using 31p nuclear magnetic resonance (NMR) spectroscopy and gel filtration chromatography. This involved quantitative extraction of organic P from the soil by sequential extraction with 0.1M NaOH, 0.2M aqueous acetylacetone (pH 8.3) and 0.5M NaOH following which the extracts were concentrated by ultrafiltration. Soils (0-7.5cm) taken from the control and 376PA annually fertilised treatments in 1958, 1971 and 1983 were used in this study. 31p NMR analysis showed that most (88-94%) of the organic P in the Winchmore soils was present as orthophosphate monoester P while the remainder was found as orthophosphate diester and pyrophosphate P. Orthophosphate monoester P also made up almost all of the soil organic P which accumulated in the 376PA treatment between 1958 and 1971. This indicated that soil organic P in the 376PA and control treatments was very stable. The gel filtration studies using Sephadex G-100 showed that most (61-83%) of the soil organic P in the control and 376PA treatments was present in the low molecular weight forms (<100,000 MW), although the proportion of soil organic P in high molecular weight forms (>100,000 MW) increased from 17-19% in 1958 to 38-39% in 1983. The latter was attributed to the microbial humification of organic P and indicated a shift toward more complex and possibly more stable forms of organic P in the soil with time. Assuming that the difference in soil organic P between the control and 376PA soils sampled in 1971 and 1983 represented the organic P derived from P fertiliser additions, results showed that this soil organic P was evenly distributed between the high and low molecular weight fractions. An exhaustive pot trial was used to examine the relative availability to plants of different forms of soil inorganic and organic P in long-term fertilised pasture soils. This involved growing 3 successive crops of perennial ryegrass (Lolium perenne) in 3 Lismore silt loam (Udic Ustochrept) soils which had received different amounts of P fertiliser for many years. Two of the soils were taken from the annually fertilised treatments in the Winchmore long term trial (188PA, 376PA) and the third (Fairton) was taken from a pasture which had been irrigated with meatworks effluent for over 80 years (65 kg P ha⁻¹ yr⁻¹). Each soil was subjected to 3 treatments, namely control (no nutrients added), N100 and N200. The latter treatments involved adding complete nutrient solutions with different quantities of N at rates of 100kg N ha⁻¹ (N100) and 200kg N ha⁻¹ (N200) on an area basis. The soil P fractionation scheme used was the same as that used in the Winchmore long-term trial study (i.e. NaHCO₃ P, NaOH I P, HCl P, NaOH II p). Results obtained showed that the availability to plants of different extracted inorganic P fractions, as measured by decreases in P fractions before and after 3 successive crops, followed the order: NaHCO₃ P > NaOH I P > HCl P = NaOH II P. Overall decreases in the NaHCO₃ and NaOH I inorganic P fractions were 34% and 16% respectively, while corresponding decreases in the HCl and NaOH II inorganic P fractions were small «10%) and not significant. However, a significant decrease in HCl P (16%) was observed in one soil (Fairton-N200 treatment) which was attributed to the significant decrease in soil pH (from 6.2 to 5.1) which occurred after successive cropping. Successive cropping had little or no effect on the levels of P in the different soil organic P fractions. This indicated that net soil organic P mineralisation did not contribute significantly to plant P uptake over the short-term. A short-term field experiment was also conducted to examine the effects of different soil management practices on the availability of different forms of P to plants in the long-term fertilised pasture soils. The trial was sited on selected plots of the existing annually fertilised treatments in the Winchmore long-term trial (188PA, 376PA) and comprised 5 treatments: control, 2 rates of lime (2 and 4 t ha⁻¹ ) , urea fertiliser (400kg N ha⁻¹ ) and mechanical cultivation. The above ground herbage in the uncultivated treatments was harvested on 11 occasions over a 2 year period and at each harvest topsoil (0-7.5 cm) samples were taken from all of the treatments for P analysis. The soil P fractionation scheme used in this particular trial involved sequential extractions with 0.5M NaHCO₃ @ pH 8.5 (NaHCO₃ P), 0.1M NaOH (NaOH P), ultrasonification with 0.1M NaOH (sonicate-NaOH p) and 1M HCl (HCl P). In addition, amounts of microbial P in the soils were determined. The results showed that liming resulted in small (10-21 µg P g⁻¹) though significant decreases in the NaOH soil organic P fraction in the 188PA and 376PA plots. Levels of soil microbial P were also found to be greater in the limed treatments compared with those in the controls. These results indicated that liming increased the microbial mineralisation of soil organic P in the Winchmore soils. However, pasture dry matter yields and P uptake were not significantly affected. Although urea significantly increased dry matter yields and P uptake, it did not appear to significantly affect amounts of P in the different soil P fractions. Mechanical cultivation and the subsequent fallow period (18 months) resulted in significant increases in amounts of P in the NaHCO₃ and NaOH inorganic P fractions. This was attributed to P released from the microbial decomposition of plant residues, although the absence of plants significantly reduced levels of microbial P in the cultivated soils. Practical implications of the results obtained in the present study were presented and discussed.
138

Bioavailability of cadmium, copper, nickel and zinc in soils treated with biosolids and metal salts

Black, Amanda January 2010 (has links)
It is widely accepted that bioavailability, rather than total soil concentration, is preferred when assessing the risk associated with metal contamination. Despite this, debate continues on what constitutes a bioavailable pool and how to best predict bioavailability, especially in relation to crop plants. The overall aim of this thesis was to assess and validate measures of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) bioavailability in a range of soils amended with metal salts and biosolids. Six potential measures of bioavailability were investigated and compared: total metal; 0.04 M EDTA extraction; 0.05 M Ca(NO₃)₂ extraction; soil solution extracted using rhizon probes; effective solution concentration (CE) determined using diffusive gradients in thin films (DGT); and modelled free ion activities (WHAM 6.0). These were compared to shoot metal concentrations obtained from plants grown in three soils with contrasting properties treated with biosolids and metal salts. The first study involved a wheat seedling (Triticum aestivum) assay carried out under controlled environmental conditions on incubated soils treated with metal salts and biosolids. Results showed that the presence of biosolids resulted in increases of DOC, salinity, Ca and Mg in soil solution as well as total concentrations of Cu and Zn, dry matter was also adversely affected by increased levels of salinity. The addition of biosolids did not significantly alter the extractability or solubility of Cd, Cu, Ni and Zn although concentrations of Cd in shoots were significantly lower in plants grown in biosolids amended soils compared with unamended soils. The second study involved a field experiment that used 20 cm diameter by 30 cm deep soil monoliths of the same three soils treated with metals and biosolids, and perennial ryegrass (Lolium perenne) was grown for 24 months. Results revealed the addition of biosolids significantly increased the amount of DOC, salinity, Ca and Mg in solution. The presence of biosolids also significantly altered the bioavailability of Cd, Cu, Ni and Zn, as measured by soil solution, CE and free ion activity. However, this change had little effect on plant metal uptake. The length of time following treatment application had the greatest effect on soil chemistry and metal availability, resulting in pH decreases and increases in DOC, soil solution salinity, Ca and Mg. The free ion activities of each metal increased with time, as did soil solution Cd and Zn and CE-Cu, with results for Zn indicative of migration through the soil profile with time. Plant uptake of Ni and Zn also changed with time. Nickel concentrations in shoots decreased, while concentrations of Zn in shoots increased. The findings from the two studies demonstrated that biosolids increased the amount of DOC, salinity, Ca and Mg present in soil solution. In the lysimeter study measures of metal availability were affected in soils amended with biosolids, but this did not effect shoot concentrations. The overall predictive strengths of the six potential measures of bioavailability was investigated using results from the previously described experiments and related studies carried out by ESR and Lincoln University using nine different soils amended with combinations of biosolids and metal salts. Of the four metals Ni provided the strongest correlations between metal bioavailability and shoot concentrations, with 0.05 M Ca(NO₃)₂ extraction giving the strongest relationship for Ni concentrations in shoots (r² = 0.73). This suggests that the solubility of Ni is highly indicative of shoot concentrations and that Ca(NO₃)₂ is a robust measure of Ni bioavailability. In addition Ca(NO₃)₂ provided the best estimate of Zn bioavailability (r² = 0.65), and CE-Cd provided the best measure of Cd bioavailability, although it could only describe 47 % of shoot Cd concentration. Results for Cu were typical of previously described studies as assays of Cu availability are almost always poorly correlated with shoot concentrations, with total Cu having the strongest relationship (r² = 0.34). Methods based on the extractability and solubility of Cu in soils were poor indicators of Cu concentration in shoots. Overall, the addition of biosolids did not alter the outcome of these bioavailability assays, and results indicated that total metal concentrations present in the soils and biosolids matrix, plus length of time since soil treatment, had a greater affect on metal bioavailability.

Page generated in 0.0492 seconds