• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gymnasialspetsutbildning i matematik : -Hur skiljer sig arbetssätten från ordinarie naturvetenskapsprogram? / Advanced high school mathematics : - How does the curriculumdiffer from science class?

Aspvall, Anne Kristin January 2012 (has links)
Syftet med examensarbetet är att undersöka om det är skillnad mellan undervisningen i matematik samt hur eleverna ser på sitt arbete på spetsutbildningen och ordinarie klasser på naturvetenskapsprogrammet. För att undersöka detta har eleverna fått besvara en enkät, deras matematiklärare har intervjuats och observationer har gjorts  i klasserna. Resultaten från denna undersökning visar att arbetssätt som till exempel grupparbeten, som främjar kommunikation, används oftare på spetsutbildningen än på det ordinarie naturvetenskapsprogrammet. Detta gäller även problemlösning som stimulerar reflektion och ger djupare förståelse för olika lösningar på matematiska problem. Eleverna på spetsutbildningen tror sig förstå sina lösningssätt medan eleverna på ordinarie naturvetenskapsprogrammet lär sig formler och lösningssätt utantill i högre utsträckning.
2

Bilder och byggen är bra även för de bästa matematikeleverna : en studie om femteklassare som löser rika problem

Gleisner, Frida January 2015 (has links)
Elever med varierad matematisk förmåga finner matematisk utmaning i olika sorters uppgifter. För att ge alla möjlighet att utmanas hänvisas eleverna ofta till enskild räkning i läromedel, en undervisningsform som kraftigt har kritiserats bland annat för att den ger litet utrymme för interaktion eleverna emellan. Den här studien redogör för hur elever i heterogena elevgrupper löser matematiska problem som är konstruerade för att utmana alla gruppens elever, inklusive elever med särskild matematisk förmåga. Fokus ligger på elevernas användning av olika representationsformer samt sociala och sociomatematiska normer i klassrummet. Studien bygger på lektionsobservationer, skriftliga elevlösningar och intervjuer med elever från årskurs fem som löser rika problem med växande mönster. Resultaten visar att alla elever mötte matematisk utmaning i uppgifterna, delvis utifrån den tolkning de gjorde av problemen. Elever som visade god problemlösningsförmåga sökte tidigt generella lösningar till problemen och mötte på så sätt en annan form av utmaning än övriga elever. Representationer med laborativt material samt ritade bilder bidrog till ökad interaktion mellan eleverna och alla elever deltog i matematiska samtal. I de gemensamma diskussionerna välkomnade läraren en variation av lösningar och uppmuntrade eleverna till att kritiskt granska och argumentera för olika lösningar, detta bidrog till att lektionerna gav eleverna goda förutsättningar att utveckla olika matematiska förmågor, förmågor som finns beskrivna i grundskolans läroplan. / Students with different degrees of mathematical ability are challenged by different types of problems. In an effort to give everyone an opportunity to be challenged, students are often instructed to solve problems individually in their textbooks, a teaching format that has been criticized because it leaves little room for student interaction. This study investigates how students in heterogeneous student groups solve mathematical problems that are constructed to challenge each student in the group, including students with exceptional mathematical abilities. An emphasis is placed on the students’ use of different representations and on social and sociomathematical norms in the classroom. The study relies on classroom observations, on written student solutions, and on interviews with fifth graders who have solved rich problems of large complexity. The results show that all students found the exercises challenging, partly thanks to their own interpretation of the problems - students who exhibited a strong ability to solve problems looked for general solutions early on, and hence faced a different type of challenge than other students. Activities involving manipulatives as well as illustrative figures contributed to the interaction between students, and all students participated in mathematical discussions. During classroom discussions, the teacher welcomed different viewpoints and encouraged students to analyze and argue for different types of solutions. This provided an opportunity for students to develop different mathematical skills as outlined in the curriculum for the compulsory school.

Page generated in 0.1039 seconds