Spelling suggestions: "subject:"säsongsvariationer"" "subject:"värmelager""
1 |
Simulering av långtidsvärmelager för drift i kraftvärmesystemNIlsson, Stefan, Andersson, Johan January 2006 (has links)
<p>Syftet med den här rapporten är att göra en undersökning av möjligheterna för användning av långtidsvärmelager för drift i kraftvärmesystem. Projektet han initierats av adj. professor Heimo Zinko, IKP Energisystem i form av bidrag till ett projekt inom IEA, Annex VIII. Projektet utförs i samarbete med Svensk Fjärrvärme, Tekniska Verken AB i Linköping, ENA Energi AB i Enköping och ZW Energiteknik i Nyköping. Projektet har genomförts av två examensarbetare vid Linköpings Tekniska Högskola under höstterminen 2006.</p><p>Projektet har delats in i två studier där ENA Energi AB i Enköping och Tekniska Verken AB i Linköping har varit de två studieobjekttiven. Modeller för värme- och elproduktion har konstruerats i Microsoft Excell och sedan har manuella simuleringar genomförts. Dels för grundfallen och för investeringsalternativ med olika lagerstorlekar. Det har även gjorts en simulering på Tekniska Verken AB: s data för värmebehov där grundproduktionen skett med en gaskombianläggning.</p><p>Resultaten visar att en investering av ett värmelager är lönsamt då värmeproduktionen för topplaster sker med olja som den gör för Tekniska Verken AB. Om däremot värmeproduktionen för topplaster sker med biobränslen eller andra billiga bränslen är det inte längre lika lönsamt att göra en investering av ett värmelager. Projektet visar även att en investering av ett lager kan minska utsläppen av koldioxid eftersom värmeproduktionen från olja kan minimeras.</p><p>En investering av ett värmelager med storleken 200 000 m3 för Tekniska Verken AB är den mest lönsamma. Den ger ett investeringsutrymme på 11,1 miljoner SEK per år samtidigt som utsläppen av koldioxid minskar med 8 300 ton. För ENA Energi AB är endast en investering av ett lager med storlek à 100 000 m3 lönsam. Den ger ett investeringsutrymme på 3,2 miljoner SEK per år. För det tredje fallet med gaskombianläggningen visade det sig att alla investeringar skulle vara lönsamma.</p>
|
2 |
Simulering av långtidsvärmelager för drift i kraftvärmesystemNIlsson, Stefan, Andersson, Johan January 2006 (has links)
Syftet med den här rapporten är att göra en undersökning av möjligheterna för användning av långtidsvärmelager för drift i kraftvärmesystem. Projektet han initierats av adj. professor Heimo Zinko, IKP Energisystem i form av bidrag till ett projekt inom IEA, Annex VIII. Projektet utförs i samarbete med Svensk Fjärrvärme, Tekniska Verken AB i Linköping, ENA Energi AB i Enköping och ZW Energiteknik i Nyköping. Projektet har genomförts av två examensarbetare vid Linköpings Tekniska Högskola under höstterminen 2006. Projektet har delats in i två studier där ENA Energi AB i Enköping och Tekniska Verken AB i Linköping har varit de två studieobjekttiven. Modeller för värme- och elproduktion har konstruerats i Microsoft Excell och sedan har manuella simuleringar genomförts. Dels för grundfallen och för investeringsalternativ med olika lagerstorlekar. Det har även gjorts en simulering på Tekniska Verken AB: s data för värmebehov där grundproduktionen skett med en gaskombianläggning. Resultaten visar att en investering av ett värmelager är lönsamt då värmeproduktionen för topplaster sker med olja som den gör för Tekniska Verken AB. Om däremot värmeproduktionen för topplaster sker med biobränslen eller andra billiga bränslen är det inte längre lika lönsamt att göra en investering av ett värmelager. Projektet visar även att en investering av ett lager kan minska utsläppen av koldioxid eftersom värmeproduktionen från olja kan minimeras. En investering av ett värmelager med storleken 200 000 m3 för Tekniska Verken AB är den mest lönsamma. Den ger ett investeringsutrymme på 11,1 miljoner SEK per år samtidigt som utsläppen av koldioxid minskar med 8 300 ton. För ENA Energi AB är endast en investering av ett lager med storlek à 100 000 m3 lönsam. Den ger ett investeringsutrymme på 3,2 miljoner SEK per år. För det tredje fallet med gaskombianläggningen visade det sig att alla investeringar skulle vara lönsamma.
|
3 |
Ökad resurseffektivitet i kraftvärmesystem genom säsongslagring av värme / Seasonal storage of heat for increased resource efficiency in combined heat and power plant systemsBjöre Dahl, Emilia, Sjöqvist, Mikaela January 2014 (has links)
Increased resource efficiency in an energy system could result in large economic and environmental benefits. Tekniska verken i Linköping AB (Tekniska verken) is responsible for the district heating network in Linköping. Their vision is to create the world’s most resource efficient region. An important step towards this vision is more efficient usage of produced heat, something which could be achieved through integration of a seasonal heat storage in the energy system. The purpose of the Master’s thesis is therefore to explore the economic and technical potential for a seasonal heat storage in Tekniska verken’s energy system. The investigated technology is borehole thermal energy storage using two different kinds of borehole heat exchangers; u-pipe and annular coaxial heat exchanger. To evaluate how Tekniska verken’s energy system changes through integration of a seasonal heat storage a calculation model has been developed in MATLAB. The heat from the seasonal storage needs to be upgraded in order to be used in the ordinary district heating network. Therefore two kinds of heat pumps have been evaluated in the model; absorption heat pumps and compression heat pumps. The main method used for calculations on the heat transfer processes in the storage is the finite difference method. During economic calculations, the economic potential of the investment is expressed solely in relation to the scenario that the storage is not built. Four different combinations of borehole heat exchangers and heat pumps have been simulated over a twenty year period. The simulated storages have a depth of 200-250 meters and a radius of approximately 100 meters which relates to1500 boreholes. The result shows small differences between the two types of heat exchangers. The choice of heat pump has though a crucial importance of the economic result. The systems with absorption heat pumps uses drive heat from existing steam production and can cover a major part of the peak load during winter. Meanwhile the compression heat pumps have a large cost for electricity. This causes a negative net present value according to the result, while the systems with absorption heat pumps have a discounted pay-back time of 12 years. Another positive effect of the systems with absorption heat pumps is the decrease in carbon dioxide emissions from the heat production. The result of the Master thesis shows that both economic advantages and increased resource efficiency can be achieved through integration of a borehole thermal energy storage with absorptions heat pumps. To further investigate this potential seems therefore beneficial. / Att öka resurseffektiviteten i ett energisystem kan medföra stora ekonomiska och miljömässiga fördelar. Tekniska verken i Linköping AB (Tekniska verken) är ansvariga för Linköpings fjärrvärmeförsörjning. De har som vision att skapa världens mest resurseffektiva region. Ett viktigt steg på vägen för att nå detta är bättre utnyttjande av producerad värme, något som kan uppnås genom integrering av ett säsongsvärmelager i energisystemet. Syftet med detta examensarbete är därmed att utreda vilken ekonomisk och teknisk potential som finns för ett säsongsvärmelager i Tekniska verkens energisystem. Den lagerteknik som undersöks är borrhålslager med två typer av borrhålsvärmeväxlare; u-rör och ringformad koaxial borrhålsvärmeväxlare. För att utvärdera hur Tekniska verkens energisystem förändras vid integrering av ett säsongsvärmelager har en beräkningsmodell byggts upp i MATLAB. Två typer av värmepumpar har utvärderats i modellen; absorptionsvärmepumpar och kompressionsvärmepumpar. Anledningen till detta är att den säsongslagrade värmen behöver uppgraderas för att kunna användas i ordinarie fjärrvärmenät. Den huvudsakliga metoden som använts vid beräkning av värmeöverföringsprocesser är finita differensmetoden. Vid ekonomiska beräkningar uttrycks investeringens ekonomiska potential enbart i relation till scenariot att lagret inte byggs. Fyra system med olika kombinationer av borrhålsvärmeväxlare och värmepumpar har simulerats över en tjugoårsperiod. De simulerade lagren har ett djup på 200-250 meter och en radie på cirka 100 meter vilket motsvarar ungefär 1500 borrhål. Resultatet påvisar små skillnader mellan de två typerna av borrhålsvärmeväxlare. Vilken typ av värmepump som används har dock en avgörande betydelse för det ekonomiska resultatet. Systemen med absorptionsvärmepumpar drivs av värme från befintlig ångproduktion och klarar av att täcka en större andel av topplasten vintertid. Samtidigt medför användning av kompressionsvärmepumpar en stor kostnad för drivel. Detta medför ett negativt nettonuvärde enligt examensarbetets resultat, medan systemen med absorptionsvärmepumpar har en diskonterad avbetalningstid på 12 år. Ytterligare en positiv effekt av systemen med absorptionsvärmepump är minskade utsläpp av koldioxid. Utifrån examensarbetets resultat framstår det som att genom integrering av ett borrhålslager med absorptionsvärmepumpar uppnås både ekonomiska vinster och en ökad resurseffektivitet i Tekniska verkens energisystem. Att fortsätta utreda denna potential framstår därmed som fördelaktigt.
|
4 |
Dimensionering av ett småskaligt säsongsvärmelager till uppvärmning av ett växthus / Designing of a small-scale seasonal thermal heat storage for heating a green houseSvensson, Daniel January 2016 (has links)
Detta examensarbete utreder om det är möjligt att värma upp en planerad växthusutbyggnad av en 1,5-plans villa i Skåre utanför Karlstad. Uppvärmningen av växthuset ska ske enbart med värme från ett säsongsvärmelager, i form av ett markvärmelager. Värmelagret ska värmas upp med hjälp av solfångare som placeras på husets tak. Växthuset värms upp genom vattenburen golvvärme. Växthuset ska värmas upp under vintern och ska klara av att hålla 5 °C med detta värmesystem. Uppdraget blir att dimensionera värmelagret efter det värmebehov växthuset har och den effekt golvvärmen kräver. Värmebehovet för växthuset simuleras i IDA ICE där även vilken effekt som krävs av golvvärmen simuleras fram. De temperaturer som vätskan i golvvärmen behöver hålla beräknas i programmet Phoenix från Uponor. Värmelagret simuleras i COMSOL Multiphysics. Innan värmelagret kan simuleras beräknas det lokala värmemotståndet mellan kollektorslangen och omgivande mark i lagret. Detta för att veta vilken temperatur som säsongsvärmelagret behöver hålla. Det lokala värmemotståndet beräknas enligt de metoder som presenteras i Markvärme – En handbok om termiska analyser del II. Värmeproduktionen av solfångare beräknas enligt Björn Karlsson formel. Resultatet blir att det krävs en värmeproduktion på 12 150 kWh av solfångare, 30 m2 solfångare, för att ladda värmelagret. Jorden i marken byts ut mot lera för att värmelagret ska klara av att hålla tillräckligt hög temperatur under vintern för att värma växthuset. Simuleringarna visar att det är två stycken lager som klarar hålla tillräckligt hög temperatur för att golvvärmen ska kunna ge den värmeeffekt som krävs. Säsongsvärmelagret klarar att värma växthuset under vintern med golvvärme. Systemet blir dock relativt dyrt, vilket gör att projektet är svårt att försvara rent ekonomiskt. / This thesis investigates whether it is possible to heat a greenhouse planned expansion of a 1.5-storey house in Skåre outside of Karlstad. The warming of the greenhouse will be made exclusively with the heat from the seasonal heat storage which is in the form of ground heat storage. The warming of the seasonal heat storage will be done using solar panels that will be placed on the roof. The greenhouse is heated by floor heating. The greenhouse will be heated during the winter and should be able to keep 5 °C with the heating system. The mission is to design the heat storage after the heating requirements that the greenhouse has and the design power the floor heating demands. The heat demand of the greenhouse is simulated in IDA ICE, where also the design power required by the floor heating is simulated. The water temperature in the floor heating is calculated in the program Phoenix from Uponor. The seasonal heat storage is simulated in COMSOL Multiphysics. Before the heat storage can be simulated, the local thermal resistance between the collector and the surrounding soil is calculated. This is to know what temperature the seasonal heat storage needs to keep. The local thermal resistance is calculated using the methods presented in Markvärme – En handbok om termiska analyser del II. The heat production of solar panels is calculated according to Björn Karlsson formula. The result is that the heat generated by the solar panels to the seasonal heat storage needs to be 12 150 kWh, this is the heat generated by 30 m2 of solar panels. The soil in the ground needs to be replaced with clay in order to get the seasonal heat storage sufficient enough to be able to keep high enough temperatures during the winter to heat the greenhouse. The simulations show that there are two heat storages sufficient enough to maintain temperatures for the underfloor heating to be able to provide the heat output required. The seasonal heat storage is capable to heat the greenhouse during the winter with floor heating. The system is relatively expensive, which means that the project is difficult to justify in economic terms.
|
5 |
Inventering av värmelager för kraftvärmesystemSandborg, Daniel January 2006 (has links)
<p>When a combined heat and power plant produces heat and power it often faces a deficit of heat load during the summer or other periods of time. This heat is often unnecessarily cooled away or the power production has to be reduced or shut off. If it is possible to store heat from periods with low heat demand to periods with high heat demand one can get many benefits. Among these benefits are: increased power production, decreased operation with partial load, uniformly distributed load.</p><p>To be able to store heat in situations like this long-term thermal heat storages are needed. In this thesis five different types of stores are presented: rock cavern storage, tank storage, pit water storage, borehole storage and aquifer storage. In this thesis the principles of the different storages is presented and experiences from operation in Sweden, Germany and Denmark are also presented.</p><p>The thesis contains a calculation of costs for the types of thermal heat storages that are suitable for use in a combined heat and power plant. To be able to function in a combined heat and power plant, a long-term thermal heat storage must be able to handle a high charge and discharge output. Storages that can meet these demands use water as store medium.</p><p>The conclusion is:</p><p>Pit storages are interesting if the capacity is below 20 000 m^3.</p><p>For capacities between 20 000 to 50 000 m^3, tank storages are most suitable.</p><p>Rock cavern storages are interesting if the capacity is larger than 100 000 m^3.</p><p>For capacities between 50 000 to 100 000 m^3, either rock cavern storages or connected tank storages are appropriate.</p>
|
6 |
Inventering av värmelager för kraftvärmesystemSandborg, Daniel January 2006 (has links)
When a combined heat and power plant produces heat and power it often faces a deficit of heat load during the summer or other periods of time. This heat is often unnecessarily cooled away or the power production has to be reduced or shut off. If it is possible to store heat from periods with low heat demand to periods with high heat demand one can get many benefits. Among these benefits are: increased power production, decreased operation with partial load, uniformly distributed load. To be able to store heat in situations like this long-term thermal heat storages are needed. In this thesis five different types of stores are presented: rock cavern storage, tank storage, pit water storage, borehole storage and aquifer storage. In this thesis the principles of the different storages is presented and experiences from operation in Sweden, Germany and Denmark are also presented. The thesis contains a calculation of costs for the types of thermal heat storages that are suitable for use in a combined heat and power plant. To be able to function in a combined heat and power plant, a long-term thermal heat storage must be able to handle a high charge and discharge output. Storages that can meet these demands use water as store medium. The conclusion is: Pit storages are interesting if the capacity is below 20 000 m^3. For capacities between 20 000 to 50 000 m^3, tank storages are most suitable. Rock cavern storages are interesting if the capacity is larger than 100 000 m^3. For capacities between 50 000 to 100 000 m^3, either rock cavern storages or connected tank storages are appropriate.
|
Page generated in 0.3364 seconds