Spelling suggestions: "subject:"ségrégation chromosomiques""
1 |
Ségrégation des chromosomes dans un croisement interspécifique de bananiers (AAAB x AA) et redistribution des séquences du Banana streak virus intégrées au génome B / Chromosome segregation in an (AAAB x AA) interspecific banana cross and redistribution of integrated Banana streak virus sequences from B genomeNoumbissie Touko, Guy Blaise 26 March 2014 (has links)
De nombreuses bananes cultivées et consommées sont des hybrides interspécifiques triploïdes entre Musa acuminata (génome A) et Musa balbisiana (génome B). L'amélioration de ces cultivars nécessite de mettre en place des stratégies complexes liées à leur faible fertilité et leur niveau de ploïdie. De plus, le génome M. balbisiana porteur de caractères agronomiques intéressants est malheureusement porteur de séquences intégrées de Banana streak virus (ou eBSV pour endogenous BSV). Ces eBSV sont capables de produire, dans un contexte de croisements interspécifiques et sous conditions de stress abiotiques, des génomes viraux responsables de l'infection systémique du bananier. L'activation spontanée de ces eBSV est la contrainte majeure des programmes d'amélioration du bananier plantain depuis plus de 10 ans. La ségrégation des chromosomes A et B chez les clones polyploïdes interspécifiques de bananiers est encore très peu connue. Nous avons au cours de cette thèse analysé la recombinaison et la ségrégation chromosomique chez 184 plantes issues de la descendance AAAB (CRBP39) x AA (Pahang_Carbap) au moyen de 38 marqueurs SSR distribués sur les 11 chromosomes Musa et de 6 marqueurs PCR spécifiques des deux espèces BSV présentes chez CRBP39 (eBSGFV-7 et eBSOLV-1). Nous avons observé qu'au cours de la formation des gamètes chez l'allotétraploïde CRBP39, la plupart des marqueurs du tétraploïde AAAB CRBP39 ont une ségrégation de type tétrasomique et que les génomes A et B recombinent au niveau de tous les segments de chromosomes pour lesquels nous pouvions suivre les allèles du chromosome B. D'autre part, nous avons montré que 50% des descendants ont reçu, à un ou quelques loci, un ou trois allèles du parent AAAB (CRBP39) au lieu de deux. La composition allélique de ces gamètes aneuploïdes, la cartographie génétique et l'analyse des corrélations entre marqueurs suggèrent que cette particularité résulte d'une variation structurale entre génomes A et B. Un des chromosomes B correspondrait à une partie des chromosomes 1A et 3A. Nous avons également observé une distorsion de ségrégation des loci eBSV avec une surreprésentation d'individus possédant au moins une intégration eBSV (86%). La régulation des eBSV semble très complexe et nécessitera des études complémentaires pour tenter d'identifier le ou les facteurs génétiques impliqués. Finalement, notre travail a montré que des croisements de type AAAB x AA peuvent générer des plantes possédant du génome B sans aucune intégration BSV (13%). Ce résultat est important car il ouvre une voie de contournement à la contrainte eBSV dans les programmes d'amélioration génétique. / Many cultivated and consumed banana are interspecific triploid hybrids between Musa acuminata (A genome) and Musa balbisiana (B genome). The genetic improvement of these cultivars requires the implementation of complex breeding strategies due to their low fertility and ploidy level. In addition, the B genome of M. balbisiana which bears interesting agronomic traits unfortunately carries endogenous Banana streak virus sequences (eBSV). Under certain conditions such as interspecific crosses and abiotic stresses, these eBSV are able to produce infectious viral genomes responsible for systemic infection of banana. The spontaneous activation of these eBSV is the major constraint of plantains improvement programs for more than 10 years. The A and B chromosomes recombination and segregation in interspecific polyploids banana are still poorly understood. We here analyzed chromosomes recombination and segregation in 184 offspring from the cross AAAB (CRBP39) x AA (Pahang_Carbap) using 38 SSR markers distributed on the 11 Musa chromosomes and 6 specific PCR markers of both BSV species integrated in CRBP39 (eBSGFV-7 and eBSOLV-1). We noticed that during CRBP39 meiosis most of the SSR markers have tetrasomic segregation and that A and B genomes recombine at all chromosomes segments where we were able to follow chromosome B alleles. Besides, we showed that 50% of the offspring received at one or several loci, one or three alleles of the CRBP39 parent instead of two. The allelic composition of these aneuploid gametes, the genetic map and the analysis of correlations between markers suggest that this peculiar observation is due to a structural variation between A and B genomes. One of the B chromosomes would be part of chromosomes 1A and 3A. We also noticed a distorted segregation of eBSV loci with an overrepresentation of individuals harboring at least one of the eBSV (86%). eBSV regulation seems very complex and requires additional studies to identify the genetic factor(s) involved. Finally, we also showed that AAAB x AA crosses can generate plants with B genome but without eBSV. This is the case for 13% of the offspring. This result is important because it shows that we can overcome eBSV constraint in banana breeding programs.
|
2 |
Caractérisation et identification du site dif chez Caulobacter crescentusFarrokhi, Ali 10 1900 (has links)
La plupart des espèces bactériennes possèdent un chromosome circulaire qui
est répliqué de façon bidirectionnelle au cours du cycle cellulaire. Bien que la
réplication et la ségrégation du chromosome bactérien se développent
simultanément, la ségrégation du chromosome s’accomplit après la fin de la
réplication et avant la fermeture du septum. La circularité du chromosome
bactérien et le grand nombre d’événements de recombinaison homologue
donnent lieu à la création des dimères de chromosome dans une fraction de
la population cellulaire. Chez Escherichia coli et Bacillus subtilis, la
dimérisation des chromosomes se produit respectivement dans 15% et 25%
des cas. Un chromosome dimérique doit être résolu avant la fermeture du
septum. Chez les espèces bactériennes les plus étudiées, les chromosomes
dimériques sont résolus par un système de recombinaison site spécifique
hautement réservé incluant deux recombinases à tyrosine, XerC et XerD, et un
site génomique dans la région terminus du génome bactérien, appelé le site
dif (deletion induced filamentation). L’organisation spatio-temporelle du
système de recombinaison site spécifique Xer/dif et l’activation de ce dernier
sont réglementées par la protéine transmembranaire impliquée dans la
division cellulaire, FtsK. D’autre part, des études récentes ont mis en évidence
l’existence de plusieurs éléments mobiles appelés IMEXs (Integrative Mobile
Elements Exploiting Xer), capables d’exploiter le système Xer/dif pour leur
intégration dans le génome bactérien.
Chez E. coli, des déficiences dans la résolution des dimères de chromosome
se terminent par le guillotinage du chromosome dimérique au cours de la
division cellulaire, ce qui entraîne l’induction de la réponse SOS chez les
cellules filles et la mort de ces dernières. Dans cette thèse, le site dif a été
identifié et caractérisé chez Caulobacter par une combinaison d’approches in
vivo et in vitro. Fait intéressant, il a été démontré que chez Caulobacter,
contrairement à E. coli, la perturbation du système Xer/dif ne mène pas au
guillotinage du chromosome, et les cellules portant un système Xer/dif
défectueux contourne cette déficience en adoptant un nouveau mode de cycle
cellulaire.
De plus, notre analyse comparative entre les terminus des souches sauvages
de C. crescentus a également permis de révéler la présence d’un IMEX putatif
de 71 kb dans le terminus de C. crescentus NA1000. / Most bacteria possess a single circular chromosome which is replicated
bidirectionally during the cell cycle. Although replication and segregation of
the chromosome in bacteria develops simultaneously, the segregation of the
chromosome occurs after the completion of replication and before the closure
of the septum. The circularity of the bacterial chromosome and the high
number of homologous recombination events that occur during replication
result in the creation of chromosome dimers in a fraction of the cell
population. In Escherichia coli and Bacillus subtilis, chromosome dimer
formation occurs, respectively, in 15% and 25% of the cell population during
replication, which needs to be resolved before the closure of division septum.
In most of the well-studied bacterial species, chromosome dimers are
resolved by a highly conserved site-specific recombination system which
employs two tyrosine recombinases, XerC and XerD, and a recombination
genomic site located in the terminus region of the bacterial chromosome
called dif (deletion induced filamentation). The temporo-spatial organization
of the Xer/dif site-specific recombination system, along with its activation, is
regulated by a cell division transmembrane protein, FtsK. In E. coli,
deficiencies in the resolution of chromosome dimers result in the guillotining
of the dimeric chromosome during the cell division leading to the continuous
induction of SOS response in the daughter cells and the death of the latter
ones. In my thesis, the dif site in Caulobacter is identified and characterized
by a combination of in vitro and in vivo approaches. Interestingly, it was
observed that, unlike E. coli, in Caulobacter perturbations in the chromosome
dimer resolution system do not result in the guillotining of the chromosome
dimers. Instead, Caulobacter cells bearing deficiencies in the resolution of
dimeric chromosomes adopt a new mode of cell cycle to bypass this
deficiency.
|
3 |
Causes and consequences of chromosome segregation errors in the mouse preimplantation embryoVázquez de Castro Diez, Cayetana 04 1900 (has links)
La division cellulaire est un processus biologique universel nécessaire à la reproduction, au développement, à la survie cellulaire ainsi qu’à la réparation des tissus. Une ségrégation chromosomique exacte pendant la mitose est essentielle pour une répartition égale des chromosomes répliqués entre les cellules filles. Des erreurs dans la ségrégation des chromosomes mènent à une condition appelée aneuploïdie, définie par un nombre inadéquat de chromosomes dans une cellule. L’aneuploïdie est associée à une altération de la santé cellulaire, la tumorigénèse, des malformations congénitales et l'infertilité. Contre toute attente, les embryons préimplantatoires de mammifères, dont les humains, consistent souvent en un mélange de cellules euploïdes et de cellules aneuploïdes. Ce mosaïcisme est inexorablement causé par des erreurs dans la ségrégation des chromosomes au cours des divisions mitotiques suivant la fécondation et est associé à un potentiel de développement réduit lors des traitements de fertilité. Malgré sa découverte il y a 25 ans, les mécanismes qui sous-tendent l’apparition de l'aneuploïdie mosaïque dans les embryons préimplantatoires sont toujours méconnus.
Pour explorer les causes et les conséquences des erreurs de ségrégation chromosomique, des approches d'imagerie de fine pointe ont été utilisées sur des embryons préimplantatoires murins. L'analyse de la dynamique de la ségrégation des chromosomes via l’imagerie de cellules vivantes a permis d’identifier les chromosomes retardataires, lors de l’anaphase, comme la forme la plus répandue des erreurs de ségrégation. Ces chromosomes retardataires entraînent fréquemment une encapsulation de chromosome unique dans une structure appelée micronoyau. D'autres expériences d'imagerie par immunofluorescence sur des cellules vivantes ou fixées ont révélé que les chromosomes des micronoyaux subissent des dommages importants à l'ADN et sont mal répartis de manière récurrente lors des divisions cellulaires subséquentes dans la phase préimplantatoire. D’autres approches ont aussi permis d’examiner l'efficacité du mécanisme de contrôle de l’assemblage du fuseau mitotique, (SAC pour Spindle Assembly Checkpoint). Les résultats obtenus attestent que le SAC fonctionne, cependant la signalisation liée au SAC n’est pas efficace et ne permet pas de différer l'anaphase, malgré la présence de chromosomes retardataires et ce indépendamment de la taille des cellules. Les résultats présentés révèlent aussi qu’une inhibition partielle d’une cible du SAC, le complexe de promotion de l'anaphase (APC/C), cause une mitose prolongée et une réduction des erreurs de ségrégation. En outre, les études présentées démontrent que la fonction déficiente du SAC pendant le développement préimplantatoire est la cause principale d’une forte incidence de chromosomes retardataires qui entraînent une mauvaise ségrégation chromosomique répétée et qui causent une aneuploïdie mosaïque dans l’embryon. De plus, ce travail fournit la preuve que la modulation pharmacologique de la signalisation SAC-APC/C permet d’éviter les erreurs de ségrégation des chromosomes dans les embryons précoces.
En conclusion, ces résultats apportent de nouvelles perspectives sur les causes et la nature des erreurs de ségrégation chromosomique dans les embryons. De plus, ce travail apporte de nouvelles explications mécanistiques sur l'apparition du mosaïcisme dans les embryons ce qui aura des implications importantes dans la détection et la prévention thérapeutique potentielle de l'aneuploïdie mosaïque dans les embryons préimplantatoires. / Cell division is a universal biological process necessary for reproduction, development, cell survival and the maintenance and repair of tissues. Accurate chromosome segregation during mitosis is essential to ensure replicated chromosomes are partitioned equally into daughter cells. Errors in chromosome segregation often result in cells with abnormal numbers of chromosomes, a condition termed aneuploidy, which is associated with impaired cellular health, tumorigenesis, congenital defects and infertility. Counterintuitively, preimplantation embryos from many mammalian species, including humans, often consist of a mixture euploid and aneuploid cells. Such mosaic aneuploidy in embryos is inexorably caused by errors in chromosome segregation during mitotic divisions following fertilization and has been associated with reduced developmental potential in fertility treatments. However, ever since its discovery 25 years ago, how and why mosaic aneuploidy arises in the preimplantation embryo has remained elusive.
To explore the causes and consequences of embryonic chromosome segregation errors, advanced imaging approaches were employed in the mouse preimplantation embryo. Live cell imaging analysis of chromosome segregation dynamics identified lagging anaphase chromosomes as the most prevalent form of chromosome mis-segregation in embryos. Lagging chromosomes frequently result in the encapsulation of single chromosomes into micronuclei, which occur in embryos in vitro and in vivo. Further live imaging and immunofluorescence experiments revealed chromosomes within micronuclei are subject to extensive DNA damage and centromeric identity loss, failing to assemble functional kinetochores and being recurrently mis-segregated during ensuing cell divisions in preimplantation development. To uncover the underlying causes for the increased propensity for chromosome mis-segregation in embryos, live imaging and loss-of-function approaches were used to examine the effectiveness of the mitotic safeguard mechanism, the Spindle Assembly Checkpoint (SAC). These studies demonstrated that the SAC normally functions to prevent segregation errors during preimplantation development but SAC signaling at misaligned chromosomes fails to delay anaphase. Moreover, SAC failure in embryos is most evident during mid-preimplantation development, independent of cell size. Partial inhibition of SAC target, the Anaphase Promoting Complex (APC/C), extended mitosis and reduced chromosome segregation errors in embryos.
These studies have uncovered deficient SAC function during preimplantation development as a major cause for the high incidence of lagging chromosomes in embryos, which result in repeated mis-segregation of single chromosomes in a manner that necessarily causes mosaic aneuploidy. Additionally, this work provides proof-of-principle demonstration that pharmacological modulation of SAC-APC/C signalling can avert chromosome segregation errors in the early embryo. Altogether, these findings present new insights into the causes and nature of chromosome mis-segregation in embryos, providing novel mechanistic explanations for the occurrence of mosaicism that will have substantial implications for the detection and potential therapeutic prevention of aneuploidy in preimplantation embryos.
|
4 |
Impact of aneuploidy on cytoplasm of mouse oocytesKravarikova, Karolina 12 1900 (has links)
Durant le développement préimplantatoire, les défauts de ségrégation des chromosomes conduisent à l'héritage d'un nombre incorrect de chromosomes, connu sous le nom d'aneuploïdie, qui provoque l'infertilité. L’imagerie à intervalle du développement préimplantatoire est introduite pour sélectionner le meilleur embryon et des efforts sont en cours pour utiliser l'imagerie non invasive pour identifier les ovocytes euploïdes en métaphase-II comme prédicteur de la viabilité future de l'embryon. Il est déjà bien établi que les ovocytes de mammifères en métaphase-II subissent des mouvements cytoplasmiques stéréotypés qui peuvent être visualisés par imagerie non invasive à fond clair à intervalle, appelée « flux cytoplasmique ». Ici, nous avons émis l'hypothèse que le flux cytoplasmique pourrait être affecté par le statut de ploïdie de l'ovule et donc être un outil de sélection utile pour sélectionner les ovules euploïdes de manière non invasive.
Nous avons développé des conditions pour générer des ovules euploïdes et aneuploïdes à partir du même bassin d'ovocytes sains. Nous avons ensuite utilisé la microscopie d'imagerie en temps réel DIC, permettant de visualiser et de mesurer le flux cytoplasmique sans manipulation de l'ovule. Les mouvements cytoplasmiques ont été liés au statut de ploïdie pour chaque ovule individuel par immunofluorescence. Nos résultats montrent qu'il n'y a pas de différence de flux cytoplasmique entre les ovules euploïdes et aneuploïdes. Nos données démontrent que l'état de la ploïdie n'a pas d'impact sur les mouvements cytoplasmiques, suggérant que l'utilisation d'une imagerie non invasive pour essayer de distinguer l'état de la ploïdie entre des ovocytes autrement sains sera difficile. / Chromosome segregation errors during early development lead to inheritance of incorrect number of chromosomes, known as aneuploidy, which causes infertility and birth defects. Time-lapse microscopy of preimplantation development is being widely introduced with the aim of selecting the best embryo and efforts to use non-invasive brightfield imaging to identify euploid oocytes at metaphase-II as a predictor of future embryo viability are underway. It is already well established that mammalian metaphase-II oocytes undergo stereotyped cytoplasmic movements that can be visualised by non-invasive brightfield timelapse imaging, termed “cytoplasmic flow”. Here, we hypothesised that this cytoplasmic flow might be affected by ploidy status of the egg and therefore be a useful selection tool to select euploid eggs non-invasively.
To address this, we developed conditions to generate euploid and aneuploid eggs from the same pool of otherwise healthy oocytes. We then used DIC live-imaging microscopy, which allowed us to visualise and measure flow without any manipulation to the egg. Importantly, individual eggs were scored for their ploidy status by immunofluorescence, so that cytoplasmic movements could be related to ploidy on an egg-by-egg basis. Our results show that there is no difference in cytoplasmic flow between euploid and aneuploid eggs. Therefore, our data demonstrates that ploidy status does not impact biologically relevant stereotyped cytoplasmic movements, suggesting that using non-invasive imaging to try to distinguish ploidy status between otherwise healthy oocytes will be challenging.
|
Page generated in 0.1064 seconds