• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • 1
  • Tagged with
  • 27
  • 27
  • 15
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gestion de mémoire pour la détection de fermeture de boucle pour la cartographie temps réel par un robot mobile

Labbé, Mathieu January 2010 (has links)
Pour permettre à un robot autonome de faire des tâches complexes, il est important qu'il puisse cartographier son environnement pour s'y localiser. À long terme, pour corriger sa carte globale, il est nécessaire qu'il détecte les endroits déjà visités. C'est une des caractéristiques les plus importantes en localisation et cartographie simultanée (SLAM), mais aussi sa principale limitation. La charge de calcul augmente en fonction de la taille de l'environnement, et alors les algorithmes n'arrivent plus à s'exécuter en temps réel. Pour résoudre cette problématique, l'objectif est de développer un nouvel algorithme de détection en temps réel d'endroits déjà visités, et qui fonctionne peu importe la taille de l'environnement. La détection de fermetures de boucle, c'est-à-dire la reconnaissance des endroits déjà visités, est réalisée par un algorithme probabiliste robuste d'évaluation de la similitude entre les images acquises par une caméra à intervalles réguliers. Pour gérer efficacement la charge de calcul de cet algorithme, la mémoire du robot est divisée en mémoires à long terme (base de données), à court terme et de travail (mémoires vives). La mémoire de travail garde les images les plus caractéristiques de l'environnement afin de respecter la contrainte d'exécution temps réel. Lorsque la contrainte de temps réel est atteinte, les images des endroits vus les moins souvent depuis longtemps sont transférées de la mémoire de travail à la mémoire à long terme. Ces images transférées peuvent être récupérées de la mémoire à long terme à la mémoire de travail lorsqu'une image voisine dans la mémoire de travail reçoit une haute probabilité que le robot soit déjà passé par cet endroit, augmentant ainsi la capacité de détecter des endroits déjà visités avec les prochaines images acquises. Le système a été testé avec des données préalablement prises sur le campus de l'Université de Sherbrooke afin d'évaluer sa performance sur de longues distances, ainsi qu'avec quatre autres ensembles de données standards afin d'évaluer sa capacité d'adaptation avec différents environnements. Les résultats suggèrent que l'algorithme atteint les objectifs fixés et permet d'obtenir des performances supérieures que les approches existantes. Ce nouvel algorithme de détection de fermeture de boucle peut être utilisé directement comme une technique de SLAM topologique ou en parallèle avec une technique de SLAM existante afin de détecter les endroits déjà visités par un robot autonome. Lors d'une détection de boucle, la carte globale peut alors être corrigée en utilisant la nouvelle contrainte créée entre le nouveau et l'ancien endroit semblable.
2

Spatio-temporal descriptors for human action recognition / Reconnaissance d’action à partir de descripteurs spatio-temporels

Megrhi, Sameh 15 December 2014 (has links)
L'analyse et l’interprétation de contenus visuels et plus particulièrement la vidéo est un domaine de recherche de plus en plus attractif en raison du nombre important d'applications telles que la vidéo-surveillance, le résumé de films, l'indexation, les jeux vidéo, la robotique et la domotique. Dans cette thèse nous nous intéressons à la détection et à la reconnaissance d'actions humaines dans des séquences vidéo. Pour la partie détection des actions, nous avons introduit deux approches basées sur les points d'intérêts locaux. La première proposition est une méthode simple et efficace qui vise à détecter les mouvements humains ensuite contribuer à extraire des séquences vidéo décrivant des actions importantes. Afin d'atteindre cet objectif, les premières séquences vidéo sont segmentées en volumes de trames et groupes de points d’intérêts. Dans cette méthode, nous nous basons sur le suivi du mouvement des points d'intérêts. Nous avons utilisé, dans un premier lieu, des vidéos simples puis nous avons progressivement augmenté la complexité des vidéos en optant pour des scènes réalistes. Les jeux de données simples présentent généralement un arrière-plan statique avec un Seul acteur qui effectue une seule action unique ou bien la même action mais d'une manière répétitive. Nous avons ensuite testé la robustesse de la détection d'action proposée dans des jeux de données plus complexes réalistes recueillis à partir des réseaux sociaux. Nous avons introduit une approche de détection d'actions efficace pour résoudre le problème de la reconnaissance d'actions humaines dans les vidéos réalistes contenant des mouvements de caméra. Le mouvement humain est donc segmenté d'une manière spatio-temporelle afin de détecter le nombre optimal de trames suffisant pour effectuer une description vidéo. Les séquences sont décrites au moyen de descripteurs spatio-temporels. Nous avons proposé dans cette thèse deux nouveaux descripteurs spatio-temporels basés sur le suivi de la trajectoire des points d'intérêts. Les suivis et la description vidéo sont effectués sur les patchs vidéo qui contiennent un mouvement ou une partie d'un mouvement détecté par la segmentation réalisée lors de l'étape précédente. Nous nous sommes basés sur le descripteur SURF non seulement pour sa précision et mais surtout pour la rapidité. Le premier descripteur proposé est appelé ST-SURF basé sur une nouvelle combinaison du (SURF) et du flot optique. Le ST-SURF permet le suivi de la trajectoire des points d'intérêts tout en gardant les informations spatiales, pertinentes, provenant du SURF. Le deuxième descripteur proposé dans le cadre de cette thèse est un histogramme du mouvement de la trajectoire (HMTO). HMTO est basé sur la position ainsi que l'échelle relative à un SURF. Ainsi, pour chaque SURF détecté, nous définissons une région du voisinage du point d'intérêt en nous basant sur l'échelle. Pour le patch détecté, nous extrayons le flot optique d'une manière dense. Les trajectoires de mouvement sont ensuite générées pour chaque pixel en exploitant les composantes horizontale et verticale de flot optique (u, v). La précision de la description de la vidéo proposée est testée sur un ensemble de données complexes et un plus grand ensemble de données réalistes. Les descripteurs de vidéo proposés sont testés d'une manière simple puis en les fusionnants avec d'autres descripteurs. Les descripteurs vidéo ont été introduits dans un processus de classification basé sur le sac de mots et ont démontré une amélioration des taux de reconnaissance par rapport aux approches précédemment proposés dans l'état-de-l ‘art. / Due to increasing demand for video analysis systems in recent years, human action de-tection/recognition is being targeted by the research community in order to make video description more accurate and faster, especially for big datasets. The ultimate purpose of human action recognition is to discern automatically what is happening in any given video. This thesis aims to achieve this purpose by contributing to both action detection and recognition tasks. We thus have developed new description methods for human action recognition.For the action detection component we introduce two novel approaches for human action detection. The first proposition is a simple yet effective method that aims at detecting human movements. First, video sequences are segmented into Frame Packets (FPs) and Group of Interest Points (GIP). In this method we track the movements of Interest Points in simple controlled video datasets and then in videos of gradually increasing complexity. The controlled datasets generally contain videos with a static background and simple ac-tions performed by one actor. The more complex realistic datasets are collected from social networks.The second approach for action detection attempts to address the problem of human ac-tion recognition in realistic videos captured by moving cameras. This approach works by segmenting human motion, thus investigating the optimal sufficient frame number to per-form action recognition. Using this approach, we detect object edges using the canny edge detector. Next, we apply all the steps of the motion segmentation process to each frame. Densely distributed interest points are detected and extracted based on dense SURF points with a temporal step of N frames. Then, optical flows of the detected key points between two frames are computed by the iterative Lucas and Kanade optical flow technique, using pyramids. Since we are dealing with scenes captured by moving cameras, the motion of objects necessarily involves the background and/or the camera motion. Hence, we propose to compensate for the camera motion. To do so, we must first assume that camera motion exists if most points move in the same direction. Then, we cluster optical flow vectors using a KNN clustering algorithm in order to determine if the camera motion exists. If it does, we compensate for it by applying the affine transformation to each frame in which camera motion is detected, using as input parameters the camera flow magnitude and deviation. Finally, after camera motion compensation, moving objects are segmented using temporal differencing and a bounding box is drawn around each detected moving object. The action recognition framework is applied to moving persons in the bounding box. Our goal is to reduce the amount of data involved in motion analysis while preserving the most important structural features. We believe that we have performed action detection in the spatial and temporal domain in order to obtain better action detection and recognition while at the same time considerably reducing the processing time...
3

Vers une description efficace du contenu visuel pour l'annotation automatique d'images

Hervé, Nicolas 08 June 2009 (has links) (PDF)
Les progrès technologiques récents en matière d'acquisition de données multimédia ont conduit à une croissance exponentielle du nombre de contenus numériques disponibles. Pour l'utilisateur de ce type de bases de données, la recherche d'informations est très problématique car elle suppose que les contenus soient correctement annotés. Face au rythme de croissance de ces volumes, l'annotation manuelle présente aujourd'hui un coût prohibitif. Dans cette thèse, nous nous intéressons aux approches produisant des annotations automatiques qui tentent d'apporter une réponse à ce problème. Nous nous intéressons aux bases d'images généralistes (agences photo, collections personnelles), c'est à dire que nous ne disposons d'aucun a priori sur leur contenu visuel. Contrairement aux nombreuses bases spécialisées (médicales, satellitaires, biométriques, ...) pour lesquelles il est important de tenir compte de leur spécificité lors de l'élaboration d'algorithmes d'annotation automatique, nous restons dans un cadre générique pour lequel l'approche choisie est facilement extensible à tout type de contenu.<br /><br />Pour commencer, nous avons revisité une approche standard basée sur des SVM et examiné chacune des étapes de l'annotation automatique. Nous avons évalué leur impact sur les performances globales et proposé plusieurs améliorations. La description visuelle du contenu et sa représentation sont sans doute les étapes les plus importantes puisqu'elles conditionnent l'ensemble du processus. Dans le cadre de la détection de concepts visuels globaux, nous montrons la qualité des descripteurs de l'équipe Imedia et proposons le nouveau descripteur de formes LEOH. D'autre part, nous utilisons une représentation par sacs de mots visuels pour décrire localement les images et détecter des concepts plus fins. Nous montrons que, parmi les différentes stratégies existantes de sélection de patches, l'utilisation d'un échantillonnage dense est plus efficace. Nous étudions différents algorithmes de création du vocabulaire visuel nécessaire à ce type d'approche et observons les liens existants avec les descripteurs utilisés ainsi que l'impact de l'introduction de connaissance à cette étape. Dans ce cadre, nous proposons une nouvelle approche utilisant des paires de mots visuels permettant ainsi la prise en compte de contraintes géométriques souples qui ont été, par nature, ignorées dans les approches de type sacs de mots. Nous utilisons une stratégie d'apprentissage statistique basée sur des SVM. Nous montrons que l'utilisation d'un noyau triangulaire offre de très bonnes performances et permet, de plus, de réduire les temps de calcul lors des phases d'apprentissage et de prédiction par rapport aux noyaux plus largement utilisés dans la littérature. La faisabilité de l'annotation automatique n'est envisageable que s'il existe une base suffisamment annotée pour l'apprentissage des modèles. Dans le cas contraire, l'utilisation du bouclage de pertinence, faisant intervenir l'utilisateur, est une approche efficace pour la création de modèles sur des concepts visuels inconnus jusque là, ou en vue de l'annotation de masse d'une base. Dans ce cadre, nous introduisons une nouvelle stratégie permettant de mixer les descriptions visuelles globales et par sac de mots.<br /><br />Tous ces travaux ont été évalués sur des bases d'images qui correspondent aux conditions d'utilisation réalistes de tels systèmes dans le monde professionnel. Nous avons en effet montré que la plupart des bases d'images utilisées par les académiques de notre domaine sont souvent trop simples et ne reflètent pas la diversité des bases réelles. Ces expérimentations ont mis en avant la pertinence des améliorations proposées. Certaines d'entre elles ont permis à notre approche d'obtenir les meilleures performances lors de la campagne d'évaluation ImagEVAL.
4

Approximate string matching distance for image classification / Distance d’édition entre chaines d’histogrammes pour la classification d’images

Nguyen, Hong-Thinh 29 August 2014 (has links)
L'augmentation exponentielle du nombre d'images nécessite des moyens efficaces pour les classer en fonction de leur contenu visuel. Le sac de mot visuel (Bag-Of-visual-Words, BOW), en raison de sa simplicité et de sa robustesse, devient l'approche la plus populaire. Malheureusement, cette approche ne prend pas en compte de l'information spatiale, ce qui joue un rôle important dans les catégories de modélisation d'image. Récemment, Lazebnik ont introduit la représentation pyramidale spatiale (Spatial Pyramid Representation, SPR) qui a incorporé avec succès l'information spatiale dans le modèle BOW. Néanmoins, ce système de correspondance rigide empêche la SPR de gérer les variations et les transformations d'image. L'objectif principal de cette thèse est d'étudier un modèle de chaîne de correspondance plus souple qui prend l'avantage d'histogrammes de BOW locaux et se rapproche de la correspondance de la chaîne. Notre première contribution est basée sur une représentation en chaîne et une nouvelle distance d'édition (String Matching Distance, SMD) bien adapté pour les chaînes de l'histogramme qui peut calculer efficacement par programmation dynamique. Un noyau d'édition correspondant comprenant à la fois d'une pondération et d'un système pyramidal est également dérivée. La seconde contribution est une version étendue de SMD qui remplace les opérations d'insertion et de suppression par les opérations de fusion entre les symboles successifs, ce qui apporte de la souplesse labours et correspond aux images. Toutes les distances proposées sont évaluées sur plusieurs jeux de données tâche de classification et sont comparés avec plusieurs approches concurrentes / The exponential increasing of the number of images requires efficient ways to classify them based on their visual content. The most successful and popular approach is the Bag of visual Word (BoW) representation due to its simplicity and robustness. Unfortunately, this approach fails to capture the spatial image layout, which plays an important roles in modeling image categories. Recently, Lazebnik et al (2006) introduced the Spatial Pyramid Representation (SPR) which successfully incorporated spatial information into the BoW model. The idea of their approach is to split the image into a pyramidal grid and to represent each grid cell as a BoW. Assuming that images belonging to the same class have similar spatial distributions, it is possible to use a pairwise matching as similarity measurement. However, this rigid matching scheme prevents SPR to cope with image variations and transformations. The main objective of this dissertation is to study a more flexible string matching model. Keeping the idea of local BoW histograms, we introduce a new class of edit distance to compare strings of local histograms. Our first contribution is a string based image representation model and a new edit distance (called SMD for String Matching Distance) well suited for strings composed of symbols which are local BoWs. The new distance benefits from an efficient Dynamic Programming algorithm. A corresponding edit kernel including both a weighting and a pyramidal scheme is also derived. The performance is evaluated on classification tasks and compared to the standard method and several related methods. The new method outperforms other methods thanks to its ability to detect and ignore identical successive regions inside images. Our second contribution is to propose an extended version of SMD replacing insertion and deletion operations by merging operations between successive symbols. In this approach, the number of sub regions ie. the grid divisions may vary according to the visual content. We describe two algorithms to compute this merge-based distance. The first one is a greedy version which is efficient but can produce a non optimal edit script. The other one is an optimal version but it requires a 4th degree polynomial complexity. All the proposed distances are evaluated on several datasets and are shown to outperform comparable existing methods.
5

Apprentissage pour la reconnaissance d'actions humaines en vidéo

Klaser, Alexander 31 July 2010 (has links) (PDF)
<p>Cette thèse s'intéresse à la reconnaissance des actions humaines dans des données vidéo réalistes, tels que les films. À cette fin, nous développons des algorithmes d'extraction de caractéristiques visuelles pour la classification et la localisation d'actions.</p> <p>Dans une première partie, nous étudions des approches basées sur les sacs-de-mots pour la classification d'action. Dans le cas de vidéo réalistes, certains travaux récents qui utilisent le modèle sac-de-mots pour la représentation d'actions ont montré des résultats prometteurs. Par conséquent, nous effectuons une comparaison approfondie des méthodes existantes pour la détection et la description des caractéristiques locales. Ensuite, nous proposons deux nouvelles approches pour la descriptions des caractéristiques locales en vidéo. La première méthode étend le concept d'histogrammes sur les orientations de gradient dans le domaine spatio-temporel. La seconde méthode est basée sur des trajectoires de points d'intérêt détectés spatialement. Les deux descripteurs sont évalués avec une représentation par sac-de-mots et montrent une amélioration par rapport à l'état de l'art pour la classification d'actions.</p> <p>Dans une seconde partie, nous examinons comment la détection de personnes peut contribuer à la reconnaissance d'actions. Tout d'abord, nous développons une approche qui combine la détection de personnes avec une représentation sac-de-mots. La performance est évaluée pour la classification d'actions à plusieurs niveaux d'échelle spatiale. Ensuite, nous explorons la localisation spatio-temporelle des actions humaines dans les films. Nous étendons une approche de suivi de personnes pour des vidéos réalistes. En outre, nous développons une représentation d'actions qui est adaptée aux détections de personnes. Nos expériences suggèrent que la détection de personnes améliore significativement la localisation d'actions. De plus, notre système montre une grande amélioration par rapport à l'état de l'art actuel.</p>
6

Traçage de contenu vidéo : une méthode robuste à l'enregistrement en salle de cinéma

Garboan, Adriana 13 December 2012 (has links) (PDF)
Composantes sine qua non des contenus multimédias distribués et/ou partagés via un réseau, les techniques de fingerprinting permettent d'identifier tout contenu numérique à l'aide d'une signature (empreinte) de taille réduite, calculée à partir des données d'origine. Cette signature doit être invariante aux transformations du contenu. Pour des vidéos, cela renvoie aussi bien à du filtrage, de la compression, des opérations géométriques (rotation, sélection de sous-région... ) qu'à du sous-échantillonnage spatio-temporel. Dans la pratique, c'est l'enregistrement par caméscope directement dans une salle de projection qui combine de façon non linéaire toutes les transformations pré-citées.Par rapport à l'état de l'art, sous contrainte de robustesse à l'enregistrement en salle de cinéma, trois verrous scientifiques restent à lever : (1) unicité des signatures, (2) appariement mathématique des signatures, (3) scalabilité de la recherche au regard de la dimension de la base de données.La principale contribution de cette thèse est de spécifier, concevoir, implanter et valider TrackART, une nouvelle méthode de traçage des contenus vidéo relevant ces trois défis dans un contexte de traçage de contenus cinématographiques.L'unicité de la signature est obtenue par sélection d'un sous-ensemble de coefficients d'ondelettes, selon un critère statistique de leurs propriétés. La robustesse des signatures aux distorsions lors de l'appariement est garantie par l'introduction d'un test statistique Rho de corrélation. Enfin, la méthode développée est scalable : l'algorithme de localisation met en œuvre une représentation auto-adaptative par sac de mots visuels. TrackART comporte également un mécanisme de synchronisation supplémentaire, capable de corriger automatiquement le jitter introduit par les attaques de désynchronisation variables en temps.La méthode TrackART a été validée dans le cadre d'un partenariat industriel, avec les principaux professionnels de l'industrie cinématographique et avec le concours de la Commission Technique Supérieure de l'Image et du Son. La base de données de référence est constituée de 14 heures de contenu vidéo. La base de données requête correspond à 25 heures de contenu vidéo attaqué, obtenues en appliquant neuf types de distorsion sur le tiers des vidéo de la base de référence.Les performances de la méthode TrackART ont été mesurées objectivement dans un contexte d'enregistrement en salle : la probabilité de fausse alarme est inférieure à 16*10^-6, la probabilité de perte inférieure à 0,041, la précision et le rappel sont égal à 93%. Ces valeurs représentent une avancée par rapport à l'état de l'art qui n'exhibe aucune méthode de traçage robuste à l'enregistrement en salle et valident une première preuve de concept de la méthodologie statistique développée.
7

Image-based detection and classification of allergenic pollen / Détection et classification des pollens allergisants basée sur l'image

Lozano Vega, Gildardo 18 June 2015 (has links)
Le traitement médical des allergies nécessite la caractérisation des pollens en suspension dans l’air. Toutefois, cette tâche requiert des temps d’analyse très longs lorsqu’elle est réalisée de manière manuelle. Une approche automatique améliorerait ainsi considérablement les applications potentielles du comptage de pollens. Les dernières techniques d’analyse d’images permettent la détection de caractéristiques discriminantes. C’est pourquoi nous proposons dans cette thèse un ensemble de caractéristiques pertinentes issues d’images pour la reconnaissance des principales classes de pollen allergènes. Le cœur de notre étude est l’évaluation de groupes de caractéristiques capables de décrire correctement les pollens en termes de forme, texture, taille et ouverture. Les caractéristiques sont extraites d’images acquises classiquement sous microscope, permettant la reproductibilité de la méthode. Une étape de sélection des caractéristiques est appliquée à chaque groupe pour évaluer sa pertinence.Concernant les apertures présentes sur certains pollens, une méthode adaptative de détection, localisation et comptage pour différentes classes de pollens avec des apparences variées est proposée. La description des apertures se base sur une stratégie de type Sac-de-Mots appliquée à des primitives issues des images. Une carte de confiance est construite à partir de la confiance donnée à la classification des régions de l’image échantillonnée. De cette carte sont extraites des caractéristiques propres aux apertures, permettant leur comptage. La méthode est conçue pour être étendue de façon modulable à de nouveaux types d’apertures en utilisant le même algorithme mais avec un classifieur spécifique.Les groupes de caractéristiques ont été testés individuellement et conjointement sur les classes de pollens les plus répandues en Allemagne. Nous avons montré leur efficacité lors d’une classification de type SVM, notamment en surpassant la variance intra-classe et la similarité inter-classe. Les résultats obtenus en utilisant conjointement tous les groupes de caractéristiques ont abouti à une précision de 98,2 %, comparable à l’état de l’art. / The correct classification of airborne pollen is relevant for medical treatment of allergies, and the regular manual process is costly and time consuming. An automatic processing would increase considerably the potential of pollen counting. Modern computer vision techniques enable the detection of discriminant pollen characteristics. In this thesis, a set of relevant image-based features for the recognition of top allergenic pollen taxa is proposed and analyzed. The foundation of our proposal is the evaluation of groups of features that can properly describe pollen in terms of shape, texture, size and apertures. The features are extracted on typical brightfield microscope images that enable the easy reproducibility of the method. A process of feature selection is applied to each group for the determination of relevance.Regarding apertures, a flexible method for detection, localization and counting of apertures of different pollen taxa with varying appearances is proposed. Aperture description is based on primitive images following the Bag-of-Words strategy. A confidence map is built from the classification confidence of sampled regions. From this map, aperture features are extracted, which include the count of apertures. The method is designed to be extended modularly to new aperture types employing the same algorithm to build individual classifiers.The feature groups are tested individually and jointly on of the most allergenic pollen taxa in Germany. They demonstrated to overcome the intra-class variance and inter-class similarity in a SVM classification scheme. The global joint test led to accuracy of 98.2%, comparable to the state-of-the-art procedures.
8

Reconnaissance perceptuelle des objets d’Intérêt : application à l’interprétation des activités instrumentales de la vie quotidienne pour les études de démence / Perceptual object of interest recognition : application to the interpretation of instrumental activities of daily living for dementia studies

Buso, Vincent 30 November 2015 (has links)
Cette thèse est motivée par le diagnostic, l’évaluation, la maintenance et la promotion de l’indépendance des personnes souffrant de maladies démentielles pour leurs activités de la vie quotidienne. Dans ce contexte nous nous intéressons à la reconnaissance automatique des activités de la vie quotidienne.L’analyse des vidéos de type égocentriques (où la caméra est posée sur une personne) a récemment gagné beaucoup d’intérêt en faveur de cette tâche. En effet de récentes études démontrent l’importance cruciale de la reconnaissance des objets actifs (manipulés ou observés par le patient) pour la reconnaissance d’activités et les vidéos égocentriques présentent l’avantage d’avoir une forte différenciation entre les objets actifs et passifs (associés à l’arrière plan). Une des approches récentes envers la reconnaissance des éléments actifs dans une scène est l’incorporation de la saillance visuelle dans les algorithmes de reconnaissance d’objets. Modéliser le processus sélectif du système visuel humain représente un moyen efficace de focaliser l’analyse d’une scène vers les endroits considérés d’intérêts ou saillants,qui, dans les vidéos égocentriques, correspondent fortement aux emplacements des objets d’intérêt. L’objectif de cette thèse est de permettre au systèmes de reconnaissance d’objets de fournir une détection plus précise des objets d’intérêts grâce à la saillance visuelle afin d’améliorer les performances de reconnaissances d’activités de la vie de tous les jours. Cette thèse est menée dans le cadre du projet Européen Dem@care.Concernant le vaste domaine de la modélisation de la saillance visuelle, nous étudions et proposons une contribution à la fois dans le domaine "Bottom-up" (regard attiré par des stimuli) que dans le domaine "Top-down" (regard attiré par la sémantique) qui ont pour but d’améliorer la reconnaissance d’objets actifs dans les vidéos égocentriques. Notre première contribution pour les modèles Bottom-up prend racine du fait que les observateurs d’une vidéo sont normalement attirés par le centre de celle-ci. Ce phénomène biologique s’appelle le biais central. Dans les vidéos égocentriques cependant, cette hypothèse n’est plus valable.Nous proposons et étudions des modèles de saillance basés sur ce phénomène de biais non central.Les modèles proposés sont entrainés à partir de fixations d’oeil enregistrées et incorporées dans des modèles spatio-temporels. Lorsque comparés à l’état-de-l’art des modèles Bottom-up, ceux que nous présentons montrent des résultats prometteurs qui illustrent la nécessité d’un modèle géométrique biaisé non-centré dans ce type de vidéos. Pour notre contribution dans le domaine Top-down, nous présentons un modèle probabiliste d’attention visuelle pour la reconnaissance d’objets manipulés dans les vidéos égocentriques. Bien que les bras soient souvent source d’occlusion des objets et considérés comme un fardeau, ils deviennent un atout dans notre approche. En effet nous extrayons à la fois des caractéristiques globales et locales permettant d’estimer leur disposition géométrique. Nous intégrons cette information dans un modèle probabiliste, avec équations de mise a jour pour optimiser la vraisemblance du modèle en fonction de ses paramètres et enfin générons les cartes d’attention visuelle pour la reconnaissance d’objets manipulés. [...] / The rationale and motivation of this PhD thesis is in the diagnosis, assessment,maintenance and promotion of self-independence of people with dementia in their InstrumentalActivities of Daily Living (IADLs). In this context a strong focus is held towardsthe task of automatically recognizing IADLs. Egocentric video analysis (cameras worn by aperson) has recently gained much interest regarding this goal. Indeed recent studies havedemonstrated how crucial is the recognition of active objects (manipulated or observedby the person wearing the camera) for the activity recognition task and egocentric videospresent the advantage of holding a strong differentiation between active and passive objects(associated to background). One recent approach towards finding active elements in a sceneis the incorporation of visual saliency in the object recognition paradigms. Modeling theselective process of human perception of visual scenes represents an efficient way to drivethe scene analysis towards particular areas considered of interest or salient, which, in egocentricvideos, strongly corresponds to the locus of objects of interest. The objective of thisthesis is to design an object recognition system that relies on visual saliency-maps to providemore precise object representations, that are robust against background clutter and, therefore,improve the recognition of active object for the IADLs recognition task. This PhD thesisis conducted in the framework of the Dem@care European project.Regarding the vast field of visual saliency modeling, we investigate and propose a contributionin both Bottom-up (gaze driven by stimuli) and Top-down (gaze driven by semantics)areas that aim at enhancing the particular task of active object recognition in egocentricvideo content. Our first contribution on Bottom-up models originates from the fact thatobservers are attracted by a central stimulus (the center of an image). This biological phenomenonis known as central bias. In egocentric videos however this hypothesis does not alwayshold. We study saliency models with non-central bias geometrical cues. The proposedvisual saliency models are trained based on eye fixations of observers and incorporated intospatio-temporal saliency models. When compared to state of the art visual saliency models,the ones we present show promising results as they highlight the necessity of a non-centeredgeometric saliency cue. For our top-down model contribution we present a probabilisticvisual attention model for manipulated object recognition in egocentric video content. Althougharms often occlude objects and are usually considered as a burden for many visionsystems, they become an asset in our approach, as we extract both global and local featuresdescribing their geometric layout and pose, as well as the objects being manipulated. We integratethis information in a probabilistic generative model, provide update equations thatautomatically compute the model parameters optimizing the likelihood of the data, and designa method to generate maps of visual attention that are later used in an object-recognitionframework. This task-driven assessment reveals that the proposed method outperforms thestate-of-the-art in object recognition for egocentric video content. [...]
9

Analyse et interprétation de scènes visuelles par approches collaboratives / Analysis and interpretation of visual scenes through collaborative approaches / Analiza si interpretarea scenelor vizuale prin abordari colaborative

Strat, Sabin Tiberius 04 December 2013 (has links)
Les dernières années, la taille des collections vidéo a connu une forte augmentation. La recherche et la navigation efficaces dans des telles collections demande une indexation avec des termes pertinents, ce qui nous amène au sujet de cette thèse, l’indexation sémantique des vidéos. Dans ce contexte, le modèle Sac de Mots (BoW), utilisant souvent des caractéristiques SIFT ou SURF, donne de bons résultats sur les images statiques. Notre première contribution est d’améliorer les résultats des descripteurs SIFT/SURF BoW sur les vidéos en pré-traitant les vidéos avec un modèle de rétine humaine, ce qui rend les descripteurs SIFT/SURF BoW plus robustes aux dégradations vidéo et qui leurs donne une sensitivité à l’information spatio-temporelle. Notre deuxième contribution est un ensemble de descripteurs BoW basés sur les trajectoires. Ceux-ci apportent une information de mouvement et contribuent vers une description plus riche des vidéos. Notre troisième contribution, motivée par la disponibilité de descripteurs complémentaires, est une fusion tardive qui détermine automatiquement comment combiner un grand ensemble de descripteurs et améliore significativement la précision moyenne des concepts détectés. Toutes ces approches sont validées sur les bases vidéo du challenge TRECVid, dont le but est la détection de concepts sémantiques visuels dans un contenu multimédia très riche et non contrôlé. / During the last years, we have witnessed a great increase in the size of digital video collections. Efficient searching and browsing through such collections requires an indexing according to various meaningful terms, bringing us to the focus of this thesis, the automatic semantic indexing of videos. Within this topic, the Bag of Words (BoW) model, often employing SIFT or SURF features, has shown good performance especially on static images. As our first contribution, we propose to improve the results of SIFT/SURF BoW descriptors on videos by pre-processing the videos with a model of the human retina, thereby making these descriptors more robust to video degradations and sensitivite to spatio-temporal information. Our second contribution is a set of BoW descriptors based on trajectories. These give additional motion information, leading to a richer description of the video. Our third contribution, motivated by the availability of complementary descriptors, is a late fusion approach that automatically determines how to combine a large set of descriptors, giving a high increase in the average precision of detected concepts. All the proposed approaches are validated on the TRECVid challenge datasets which focus on visual concept detection in very large and uncontrolled multimedia content.
10

Modélisation non-supervisée de signaux sociaux / Unsupervised modelisation of social signals

Michelet, Stéphane 10 March 2016 (has links)
Le but de cette thèse est de proposer des méthodes d'étude et des modèles pour l'analyse des signaux sociaux dans un contexte d'interaction en exploitant à la fois des techniques issues du traitement du signal et de la reconnaissance des formes.Tout d'abord, une méthode non supervisée permettant de mesurer l'imitation entre deux partenaires en termes de délai et de degré est proposée en étudiant uniquement des données gestuelles. Dans un premier temps, des points d'intérêts spatio-temporels sont détectés afin de sélectionner les régions les plus importantes des vidéos. Ils sont ensuite décrits à l'aide d'histogrammes pour permettre la construction de modèles sac-de-mots dans lesquels l'information spatiale est réintroduite. Le degré d'imitation et le délai entre les partenaires sont alors estimés de manière continue grâce à une corrélation-croisée entre les deux modèles sac-de-mots.La deuxième partie de cette thèse porte sur l'extraction automatique d'indices permettant de caractériser des interactions de groupe. Après avoir regroupé tous les indices couramment employés dans la littérature, nous avons proposé l'utilisation d'une factorisation en matrice non négative. En plus d'extraire les indices les plus pertinents, celle-ci a permis de regrouper automatiquement et de manière non supervisée des meetings en 3 classes correspondant aux trois types de leadership tels que définis par les psychologues.Enfin, la dernière partie se focalise sur l'extraction non supervisée d'indices permettant de caractériser des groupes. La pertinence de ces indices, par rapport à des indices ad-hoc provenant de l'état de l'art, est ensuite validée dans une tâche de reconnaissance des rôles. / In a social interaction, we adapt our behavior to our interlocutors. Studying and understanding the underlying mecanisms of this adaptation is the center of Social Signal Processing. The goal of this thesis is to propose methods of study and models for the analysis of social signals in the context of interaction, by exploiting both social processing and pattern recognition techniques. First, an unsupervised method allowing the measurement of imitation between two partners in terms of delay and degree is proposed, only using gestual data. Spatio-temporal interest point are first detected in order to select the most important regions of videos. Then they are described by histograms in order to construct bag-of-words models in which spatial information is reintroduced. Imitation degree and delay between partners are estimated in a continuous way thanks to cross-correlation between the two bag-of-words models. The second part of this thesis focus on the automatic extraction of features permitting to characterizing group interactions. After regrouping all features commonly used in literature, we proposed the utilization of non-negative factorization. More than only extracting the most pertinent features, it also allowed to automatically regroup, and in an unsupervised manner, meetings in three classes corresponding to three types of leadership defined by psychologists. Finally, the last part focus on unsupervised extraction of features permitting to characterize groups. The relevance of these features, compared to ad-hoc features from state of the art, is then validated in a role recognition task.

Page generated in 0.0784 seconds