• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 36
  • 16
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 33
  • 31
  • 24
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design and Optimization of Carbon-Fiber Chassis Panels

Anderson, Eric Carlton 05 June 2014 (has links)
Each year, the Virginia Tech (VT) Formula SAE (FSAE) team creates a high performance car to compete against 120 teams from around the world in a series of dynamic events evaluating acceleration, maneuverability, and handling. In an effort to improve upon the VT 2013 car, the torsional stiffness of the chassis was increased. Increasing the torsional stiffness of the chassis allows the suspension to be more precisely tuned, resulting in a better overall performance. An investigation was conducted into methods for improving the chassis stiffness, and it was determined that many state-of-the-art vehicles from go-karts to super cars incorporate strength-bearing, tailored advanced composite materials in their structure. Examples of components that use composites in vehicles include sandwich structures in load-bearing panels, layups in the skin of vehicles for aesthetic purposes and carbon-fiber frame tubes. The VT FSAE car already includes untailored carbon-fiber panels on the bottom and sides of the structure for packaging and aerodynamic purposes. By integrating and optimizing these carbon-fiber panels, the torsional stiffness and therefore overall performance of the structure may be increased. This thesis explores composite testing, optimization methods, experimental and computational analysis of the chassis, and results. The fiber orientation of the panels may be optimized because carbon-fiber composite materials are generally anisotropic. Therefore the composite materials can be tailored to maximize the stiffness, resulting in the optimum stiffness per added weight. A good measure for testing stiffness per added weight is through measuring natural frequencies because natural frequency is proportional to stiffness per unit mass. A computer program was developed in MATLAB to optimize the composite configuration, and uses an objective function involving the first three natural frequencies of the original steel space frame chassis and the first three natural frequencies of the steel chassis augmented with three composite panels. The composite material properties were determined using specimen tensile testing and checked with finite elements. The natural frequencies of the half-scale chassis were determined experimentally, compared to the simulated version, and varied by less than seven percent. The optimization of the full-scale model determined that eight layers of optimized, integrated carbon-fiber composite panels will increase the first, second, and third natural frequencies by sixteen, twenty-six, and six percent, respectively. Natural frequency increases of these amounts show that by using tailored, load-bearing composite panels in the structure, the torsional stiffness of the structure increases, resulting in easier suspension tuning and better performance at the VT FSAE competitions. / Master of Science
32

Design and Qualification of a Test Fixture to Experimentally Determine Global Tire Force Properties

Cauthen, Rea Kimbrell III 03 April 2014 (has links)
The advent of finite element methods has changed the tire industry's design process over the past three decades. Analyses, previously impractical using analytical methods and physically limited by experimental methods, can now be performed using computational methods. This decreases the cost and time associated with bringing a new design to the marketplace; however some physical testing is still required to validate the models. The design, fabrication, installation, and operation of a tire, suspension, and chassis test fixture (TiSCTeF) is detailed as part of this study. This fixture will support the validation of effective, parametric finite element models currently under development, as well as the design and testing of suspension and chassis components for the Virginia Tech Formula SAE team. The fixture is designed to use the Formula SAE race car as the test platform. Initially, the fixture is capable of performing static load-deflection and free-rolling tire tests. Provision has been made in the design for incremental upgrades to support cornering tests and additional instrumentation. An initial load-deflection test has proven that the fixture is capable of creating reproducible data sets. Specific recommendations are made concerning the improvement of data quality for future tests. This study also presents a process for analyzing existing tire cornering data and eliminating anomalies to improve the effectiveness of normalization techniques found in the literature. The process is shown to collapse tire cornering data, which is partially ill- conditioned, onto master curves that consistently display the effect of inclination angle and tire inflation pressure on tire response. / Master of Science
33

An Interdisciplinary and Probabilistic Treatment of Contemporary Highway Design Standards

Kim, Troy Jaisohn 14 May 2024 (has links)
Although Autonomous Vehicles (AVs) are quickly becoming a reality, there is much that needs to be understood before mainstream commercialization can occur. One critical issue is the interplay between multiple fields of engineering. Whereas the first part of this work is a granular treatment of a specific issue, the second part simultaneously examines numerous fields within the transportation industry. In the surge to understand and develop AVs, researchers tend to study specific subdivisions within the "vehicle engineering umbrella". In particular, mechanical and civil engineers study vehicle dynamics in two different levels of specificity. Mechanical engineers typically investigate small-scale dynamic behavior which applies to a single vehicle, such as vehicle-terrain interactions or the behavior of mechanical components. On the other hand, civil engineers tend to study kinematic behavior: the behavior of platoons as it pertains to large-scale traffic flow. Regardless of the scale of study, each subdivision has a set of performance metrics. Due to the differences among subdivisions, some performance metrics may (unintentionally) compete. Compromises must be made in the design stage to produce a vehicle which caters to an appropriate audience. The first part of this work features two major contributions to bridge the gap between the dynamic and kinematic perspectives. One is the application of Design Envelopes that establishes a framework to balance constraints and assess design tradeoffs arising from each viewpoints. Three Design Envelopes are introduced to reach compromises on a vehicle's velocity, acceleration, and jerk. Another contribution is a methodology to tune the parameters of a car-following model analytically. Current tuning practices require empirically collected traffic count data, which is cumbersome to obtain. Analytically parameterizing car-following models facilitates more robust planning and encompasses both the dynamic and kinematic perspectives. The second contribution utilizes these Design Envelopes to improve a currently-existing speed profile generator. Integrating the Design Envelopes reformulates the existing algorithm as a constrained LQR problem, which enhances ride comfort and maintains dynamic stability for not just one vehicle, but a platoon. Simulations demonstrate that the refined algorithm can reduce the travel time on a specific route by 3-4.4%. More importantly, the simulations demonstrate it is possible to synthesize multiple engineering fields to enhance AV design. The second part of this work features two contributions aimed at revisions to modern-day highway design policies based on the concept of combining microscopic and macroscopic principles. One common belief is that AVs should drive better than the best human drivers, which suggests operating at or close to the vehicle's theoretical handling limits. Operating in this manner requires a thorough understanding of the associated risks, particularly the risks stemming from uncertainty. This is especially pertinent as there are many inherently probabilistic quantities that are conveniently treated as deterministic in vehicle performance simulations, such as the coefficient of friction. This is a questionable practice when operating on the precipice of compromised safety. Thus, the second part of this work probabilistically examines the chance of handling loss given the amount of tire-road friction and driver acceleration. The result is a mathematically rigorous quantification of a safety margin for various road conditions and driver ability levels. Changes to the official US highway design handbook are recommended based on the findings. / Doctor of Philosophy / Autonomous vehicles (AVs) are quickly becoming a reality. In the surge to understand and develop AVs, researchers tend to study specific subdivisions within the vehicle engineering umbrella. In particular, mechanical and civil engineers study vehicle dynamics in two different levels of specificity. Mechanical engineers typically investigate the dynamics of a single vehicle, such as vehicle-terrain interactions or how various mechanical components operate. On the other hand, civil engineers tend to study traffic flow, which involves platoons (large groups of vehicles). Regardless of the scale of study, each subdivision has a set of performance metrics. Due to the differences among subdivisions, some performance metrics may (unintentionally) compete. Compromises must be made in the design stage to produce a vehicle which caters to an appropriate audience. This work features four main contributions. The first contribution is the application of Design Envelopes that establishes a framework to balance constraints arising from the different ways of studying vehicle dynamics. Three Design Envelopes are introduced to reach compromises on various facets of a vehicle's behavior, such as the vehicle's speed. The second contribution utilizes these Design Envelopes to improve a currently-existing speed profile generator. The current speed profile generator determines how to smoothly transition between two speeds (such as needing to decelerate to remain under a speed limit), but the ride may be uncomfortable to passengers. Integrating the Design Envelopes into the algorithm enhances the ride comfort for not just one vehicle, but a platoon. Simulations demonstrate that the refined algorithm can reduce the travel time on a specific route by 3-4.4%. The third contribution examines how horizontal curves on highways are designed, and a revision based on an acceleration-based safety margin is proposed. Finally, the fourth contribution considers important design variables probabilistically to establish a link between a motorist's acceleration and the chance of a tire skidding failure, which can impact the way straightaway road segments are designed to accommodate sudden braking maneuvers. As a whole, this work demonstrates it is possible to synthesize multiple engineering fields to enhance both current and future (full-scale AV implementation) roadway design.
34

Návrh přední nápravy formule SAE / Design of formula SAE front axle

Honzík, Tomáš January 2008 (has links)
My thesis will be aimed at front axle design. I am going to design the assembly of the front axle in the program ADAMS by MSC. I am going to observe and record most of cinematic changes of the car such as change of position of vehicle roll centre ,wheel camber, geometry adjustment , wheel toe-in measuring and other necessary data. The final report is going to include strength calculation of particular axle parts. I am also going to solve the axle stabilizer including strength calculation.
35

Optimalizace konstrukce rámu vozidla Formule Student / Formula Student Vehicle Frame Optimization

Krkoška, Kamil January 2010 (has links)
The goal of this diploma thesis was to create optimalizated frame design for Formula Student/SAE. Basic requirements were, that new design must meet the newest Formula Student/SAE rules and other various requirements. In the thesis are built up an overview of most important rules and also an overview of previous frame designs. Next are described design process of the new frame and its stress analysis in FEM software. Main attention is given to analysis of torsional stiffness. The results of analysis are compared to previous frame designs and to parameters of Formula Ford. There are also given recommendations and other possibilities for further frame design development.
36

Estudo da influência da rigidez do quadro na dirigibilidade de um veículo de competição Fórmula SAE em ambiente multicorpos / Study of the influence of the frame stiffness in handling with a Formula SAE vehicle in multibody interface

Ericsson, Luis Gustavo Sigward 19 December 2008 (has links)
O objetivo deste trabalho é estudar a influência da rigidez do quadro na dirigibilidade de um veículo de competição fórmula SAE (protótipo E2-M, da equipe EESC-USP) em ambiente multicorpos com o software Adams/Car. Um modelo contendo os subsistemas de suspensão, direção, pneumático, powertrain, barra estabilizadora e quadro foi construído em ambiente multicorpos com componentes modelados como corpos rígidos. Posteriormente foram elaborados três modelos de quadros flexíveis com diferentes valores de rigidez torcional para substituir o quadro rígido. Estes foram obtidos através da análise modal com o auxílio do método dos elementos finitos. Para comparação da dinâmica lateral dos modelos, típicas manobras do estudo de dirigibilidade foram consideradas tais como rampsteer, step-steer e single lane change. Os resultados obtidos foram de aceleração lateral e velocidade de guinada. Pelas condições avaliadas, pode-se concluir que a rigidez torcional de um quadro para o protótipo E2-M pode estar entre 700 e 1500 N.m/o. Essa variação de rigidez representou 5 kg de massa no quadro. Porém deve-se fazer uma avaliação modal com a massa suspensa calibrada para verificar se não existe acoplamento de modos e freqüências com outros subsistemas. / This dissertation is intended to study the influence of frame stiffness in handling of a Formula SAE vehicle (E2-M prototype from EESC-USP Formula SAE team) in multibody with Adams/Car software. A model containing the subsystems of suspension, steering, tires, powertrain, frame and stabilizing bar was built considering rigid bodies. Subsequently, three models of flexible frames were developed with different values of torsional stiffness to replace the rigid frame. They were obtained through modal analysis with the aid of finite element method. For the handling investigation, maneuvers such as ramp-steer, step-steer and single lane change were considered. The results evaluated were lateral acceleration and yaw velocity. According to results, the torsional stiffness for the E2-M prototype can be between 700 and 1500 Nm/o. But an eigenvalue analyses is also necessary to verify if there is no coupling of modes of the calibrated sprung mass with other subsystems.
37

Caracterização mecânica e miscroestrutural dos aços SAE 4340 e 300M após soldagem a laser e tratamento superficial de nitretação a plasma / Mechanical and microestructural caracterization of SAE 4340 and 300M steels after laser beam welding and plasma nitriding

Cardoso, Andréia de Souza Martins 08 February 2011 (has links)
O aço de médio carbono e baixa liga SAE 4340 vem sofrendo diversas modificações e neste processo de desenvolvimento surgiu o aço 300M. O presente trabalho visa avaliar e comparar a microestrutura e a resistência mecânica dos aços SAE 4340 e 300M, submetidos ao processo de soldagem autógena a laser e em seguida a duas formas de tratamento: o revenimento pós-soldagem e a nitretação à plasma. Também é avaliado o efeito combinado dos tratamentos de revenimento e nitretação. Após soldagem, as chapas foram divididas nos lotes: como recebido, soldado, soldado e revenido, soldado e tratado superficialmente por nitretação a plasma e soldado, revenido e tratado superficialmente por nitretação a plasma. A partir desses lotes, foram obtidas amostras para análise microestrutural e produzidos corpos-de-prova para ensaios de tração. Os resultados mostraram que a presença de precipitados confere ao aço 300M maior resistência mecânica em relação ao aço 4340. Após a soldagem a laser, a zona fundida e zona termicamente afetada de ambos os materiais apresentaram fases diferentes das fases presentes no metal base, a zona fundida mostrou-se martensítica em sua maioria, e a zona termicamente afetada apresentou-se multifásica. Devido às dimensões reduzidas do cordão de solda, o comportamento em tração dos corpos-deprova soldados não diferiu significativamente dos corpos-de-prova produzidos com os materiais de base. O tratamento térmico de revenimento pós-soldagem promoveu queda na dureza da zona fundida em ambos os aços. Após a nitretação, os aços 4340 e 300M apresentaram aumento de dureza próximo às superfícies. O aço 4340 apresentou aumento na resistência mecânica sem perda significativa de ductilidade. Quando revenido e nitretado após a soldagem, o aço 4340 apresentou ligeira queda na resistência mecânica. A nitretação do aço 300M, com a temperatura e tempo escolhidos, levou à fragilização do material em ambas as situações (com e sem revenimento), resultando em uma piora significativa das propriedades mecânicas, o que indica que os parâmetros de nitretação para este aço devem ser revistos. / The high-strength low-alloy (HSLA) steel SAE 4340 has been modified over time giving raise to the 300M steel. This study intends to evaluate and compare the microstructure and the mechanical behavior of the steels SAE 4340 and 300M, after laser beam welding in one pass, followed by distinct treatment routes: tempering, plasma nitriding and tempering plus plasma nitriding. After welding, the plates were divided into five sets: as welded, welded and tempered, welded and plasma nitrided, welded and tempered and plasma nitrided. The samples for microstructural analyses and tensile tests were taken from these material conditions. The results revealed that the presence of precipitates allow higher mechanical strenght to the 300M steel compared to 4340 steel. The melted zone showed more fases if compared with base material, fase like martensite, and the heat affected zone presented a multiphase in your matrix. The melted zone in both materials suffered a hardness decreasing after tempering, although no microstructural changes were observed. After nitriding the 4340 and 300M steels showed a surface hardness increase. The 4340 steel showed an increase in tensile strenght without significant ductility loss. When tempered and nitrided after welding, the 4340 steel suffered a drop in its mechanical strenght. The 300M steel suffered an embrittlement after nitriding in both situations (with and without tempering), resulting in unsatisfactory mechanical properties. This indicates that improvements are needed in the plasma nitriding parameters for this steel.
38

Estudo da influência do meio corrosivo na resistência à fadiga do aço estrutural SAE 8620

Nelson do Nascimento Atanazio Filho 26 May 2006 (has links)
Nenhuma / A corrosão-fadiga é provavelmente um dos mais complexos de todos os fenômenos, sendo influenciada por fatores ambientais, mecânicos, metalúrgicos, somados a uma componente cíclica de tensões. A corrosão-fadiga pode ser definida como a ação combinada de um ambiente agressivo e uma tensão cíclica que conduzem à falha prematura dos metais por trincamento. A maior parte da vida em fadiga está relacionada a uma sucessão de processos durante os quais planos de escorregamento, deformações localizadas, danos e micro trincas se iniciam e desenvolvem até a nucleação de trinca macroscópica. Neste estudo, a influência da solução de NaCl 3,5% nas propriedades de fadiga do aço foi avaliada. Foram analisadas as curvas de S-N-P obtidas sob ambiente corrosivo e comparadas com as curvas de S-N-P obtidas em água destilada. Em geral, a corrosão-fadiga em soluções aquosas é um processo eletroquímico. O mecanismo de iniciação de trincas por corrosão-fadiga proposto para explicar a redução da vida em fadiga de metais em ambientes corrosivos, foi analisado neste trabalho
39

Análise e estudo de parâmetros para texturização a laser com pulsos ultracurtos para melhoria das propriedades tribológicas de componentes de motor / Analysis and study of parameters for laser surface texturing with ultrashort pulses to improve of tribological properties of engine components

Vieira, Alexandre 13 June 2018 (has links)
Neste trabalho foram realizadas otimizações no processo de fabricação de micro cavidades na superfície do aço DIN 16MnCr5, com o objetivo de reduzir o coeficiente de atrito dinâmico entre duas superfícies. Para a confecção das micro cavidades (dimples) foi utilizado um laser com pulsos ultracurtos, de largura temporal de algumas dezenas de femtossegundos. Além de estudos de variação de fluência do laser, também foi analisado o resultado da utilização de diferentes perfis de energia do feixe. Para a caracterização das micro cavidades, foram utilizadas técnicas como a microscopia eletrônica de varredura, para análise morfológica, interferometria de luz branca e microscopia confocal para análise topográfica, dimensional e perfilométrica. Foram realizados ensaios de desgaste, em tribômetro para análise da variação do coeficiente de atrito após a texturização. Após os ensaios, percebeu-se que a texturização com pulsos ultracurtos apresenta grande vantagem na confecção de micro cavidades devido a precisão e ausência de interação térmica entre o laser e o material. Em relação ao atrito, as amostras texturizadas apresentaram redução da força e do coeficiente de atrito, porém, foram observados sinais de aumento da pressão de contato entre as superfícies. / In this work, optimizations were realized in the dimples manufacturing process on DIN 16MnCr5 steel surface, the target were to reduce the coefficient of dynamic friction between two surfaces. A laser with ultrashort pulses, temporal width of a few tens of femtoseconds, was used to manufacture dimples. In addition to studies of variation of laser beam fluency, the results of the use of different beam energy profiles were also analyzed. For analysis of dimples, techniques such as scanning electron microscopy (SEM), for morphological analysis, white light interferometry and confocal surface microscopy were used for topographic, dimensional and perfilometry. Wear tests were performed to analyze the variation of the friction coefficient in texturing surface. After the tests, it was observed that the texturing with ultrashort pulses presents a great advantage in manufacturing of dimples, due to the precision and absence of thermal interaction between the laser beam and the material. In relation to the friction coefficient, the textured samples presented a reduction of the friction force and consequently of the friction coefficient, but an increase in the contact pressure between the studied surfaces was observed.
40

Análise e estudo de parâmetros para texturização a laser com pulsos ultracurtos para melhoria das propriedades tribológicas de componentes de motor / Analysis and study of parameters for laser surface texturing with ultrashort pulses to improve of tribological properties of engine components

Alexandre Vieira 13 June 2018 (has links)
Neste trabalho foram realizadas otimizações no processo de fabricação de micro cavidades na superfície do aço DIN 16MnCr5, com o objetivo de reduzir o coeficiente de atrito dinâmico entre duas superfícies. Para a confecção das micro cavidades (dimples) foi utilizado um laser com pulsos ultracurtos, de largura temporal de algumas dezenas de femtossegundos. Além de estudos de variação de fluência do laser, também foi analisado o resultado da utilização de diferentes perfis de energia do feixe. Para a caracterização das micro cavidades, foram utilizadas técnicas como a microscopia eletrônica de varredura, para análise morfológica, interferometria de luz branca e microscopia confocal para análise topográfica, dimensional e perfilométrica. Foram realizados ensaios de desgaste, em tribômetro para análise da variação do coeficiente de atrito após a texturização. Após os ensaios, percebeu-se que a texturização com pulsos ultracurtos apresenta grande vantagem na confecção de micro cavidades devido a precisão e ausência de interação térmica entre o laser e o material. Em relação ao atrito, as amostras texturizadas apresentaram redução da força e do coeficiente de atrito, porém, foram observados sinais de aumento da pressão de contato entre as superfícies. / In this work, optimizations were realized in the dimples manufacturing process on DIN 16MnCr5 steel surface, the target were to reduce the coefficient of dynamic friction between two surfaces. A laser with ultrashort pulses, temporal width of a few tens of femtoseconds, was used to manufacture dimples. In addition to studies of variation of laser beam fluency, the results of the use of different beam energy profiles were also analyzed. For analysis of dimples, techniques such as scanning electron microscopy (SEM), for morphological analysis, white light interferometry and confocal surface microscopy were used for topographic, dimensional and perfilometry. Wear tests were performed to analyze the variation of the friction coefficient in texturing surface. After the tests, it was observed that the texturing with ultrashort pulses presents a great advantage in manufacturing of dimples, due to the precision and absence of thermal interaction between the laser beam and the material. In relation to the friction coefficient, the textured samples presented a reduction of the friction force and consequently of the friction coefficient, but an increase in the contact pressure between the studied surfaces was observed.

Page generated in 0.0487 seconds