Spelling suggestions: "subject:"bands"" "subject:"hands""
51 |
Endophytic fungi associated with pioneer plants growing on the Athabasca oil sandsBao, Xiaohui 04 June 2009
Fungal endophytes live inside plants without causing apparent symptoms of infection. All plant species surveyed thus far, including liverworts, mosses, seedless vascular plants, conifers, and angiosperms, harbor one or more endophytic fungi. Fungal endophytes can be divided into four groups including class 1, class 2, class 3 and class 4 endophytic fungi according to host range, colonization pattern, transmission, and ecological function. Class 2 fungal endophytes benefit their host by increasing environmental stress tolerance (i.e. water, temperature, salt) in a habitat-specific manner. In my study, class 2 fungal endophytes were studied from weedy plants growing in an environmentally stressed area: mine tailings from the Athabasca oil sands. This area is a vast hydrocarbon reserve in western Canada that supplies 10% of Canadian oil needs. Hydrocarbons are extracted from tar sands with hot water, alkali, and solvents. The tailing sands can later be remediated (by adding organic material and fertilizer) to establish new plant communities. Prior to remediation, tailing sands have extremely low content of organic carbon and available minerals, and are hydrophobic compared to unimpacted and remediated soils. Nevertheless, <i>Taraxacum</i> (dandelion) and <i>Sonchus</i> (sow-thistle) can colonize extracted tailing sands even prior to remediation. Preliminary results show that pioneer plants have similar fungal abundance as plants of unextracted treatments. Fungal endophytes were isolated from surface sterilized <i>Taraxacum</i> and <i>Sonchus</i> that had been growing upon unimpacted, remediated and extracted soil. Fungi isolated in this way included <i>Alternaria, Tricoderma, Fusarium</i> and an unidentified <i>Perithecial Ascomycote</i>. These endophytic fungi were used to inoculate tomato plants in a greenhouse trial to determine whether they confer stress tolerance to host plants, especially for drought and low mineral nutrition. Before exposing the tomato plants to environmental stresses, the specific endophytic fungal strains applied were successfully recovered from tomato plants originally inoculated with the same endophytic fungi. Although the other endophytic fungi turned out to be harmful to the tomato plants in the test, a <i>Trichoderma spp.</i> strain isolated from samples of extracted treatment appears to confer tolerance of tailing sands to the tomato plants. This <i>Trichoderma spp.</i> strain which we can call <i>TSTh20-1</i> was molecularly identified as <i>Trichoderma harzianum</i>. Despite an identification to species, all strains of <i>T. harzianum</i> are not necessarily identical regarding strain-specific attributes. Using similar techniques described here, it is possible to isolate and potentially use beneficial class 2 endophytic fungal strains for the remediation process in the Athabasca oil sands or to assist plant growth in other high stress environments.
|
52 |
X-ray microscopy of hydrocarbon-clay interactionsCovelli, Danielle Sarah 30 August 2007
One of the critical challenges in the Canadian oil sand industry is improving processes used to separate bitumen from oil sands and to remove clay particulates from produced oil. The fine clay particles are believed to play a significant role in the oil sands industry, from stabilizing process emulsions to fouling problems in water treatment. Addressing the problems caused by these fine clay particulates is limited by the ability to characterize the hydrocarbon-clay interactions.
Scanning Transmission X-ray Microscopy (STXM) is used to study hydrocarbon-clay interactions in controlled model systems, where all components are known, and in process samples extracted from oil sands. To use STXM to study our desired systems, many experimental developments were required. Well developed sample preparation was needed to provide samples free from contaminants and experiments free of artifacts. Clean clays, free of extraneous carbon were required for model studies. A device to reduce photodeposition in the STXM chamber was also required to examine interactions of hydrocarbons on clay surfaces. <p>Using these developments, Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of model clays and model hydrocarbon mixtures were recorded using the STXM microscope on beamline 5.3.2 at the Advanced Light Source, in Berkeley CA. Using NEXAFS spectroscopy in conjunction with the STXM microscope, allowed us to explore preferential interactions between specific hydrocarbon and fine clay particles (smaller than 1 µm) in our model studies. We were also able to assess the chemistry of the hydrocarbons before association with the clay particles. <p>Process samples, consisting of a set of four bitumen froths extracted from the oil sands were investigated. The carbon chemistry of the froths was assessed and quantitatively analyzed. The findings were correlated with previous confocal microscopy results from our collaborators at CANMET Energy Technology Centre in Devon, Alberta.
|
53 |
Hydrogeologic characterization of a newly constructed saline-sodic clay overburden hillChapman, Denise E 18 September 2008
Syncrude Canada Ltd (Syncrude) Mildred Lake operation is the largest producer of crude oil from oil sands mining in Canada. A saline-sodic clay-shale overburden known as the Clearwater Formation (Kc) must be removed in order to access the oil-bearing McMurray Formation (Km). The potential concerns associated with the reclamation of overburden structures include shale weathering and salt release and migration, resulting in salinization of groundwater, surface water, and reclamation soil covers. South Bison Hill (SBH) is one example of a Kc overburden structure located at the Syncrude Mildred Lake Operation. The general objective of this study is to develop a preliminary conceptual/interpretative model of the hydrogeology of the newly reclaimed SBH at the Syncrude mine site. A number of tasks were undertaken to meet this general objective. The first, and most important aspect of this study was to develop a geological model of SBH including pile geometry and depositional history of the hill. Secondly, to gain an understanding of the field conditions, a program was carried out over 2002 and 2003 to obtain pile physical characteristics. The geological model revealed that there are four main geological sections of SBH of different materials using different construction methods. The field data were used to verify the geological model, which illustrated the differences in hydraulic conductivities and geochemical signatures between the different sections. All information was used to develop a simple steady-state numerical seepage model of SBH to be used as a tool to investigate the response of the water levels of SBH to variations in the model parameters. The model illustrated that groundwater flow is largely controlled by a more permeable section on the south side of SBH and an unstructured Kc fill at the base of the pile. A sensitivity analysis was conducted on the model changing the flux into the pile, the permeability of the materials, and most importantly the head value of the tailings facility located on the north side both showing to be influential on the elevation of the water table through SBH.
|
54 |
A laboratory evaluation of the sorption of oil sands naphthenic acids on soilsJanfada, Arash 02 January 2008
The adsorption characteristics of an oil sands tailings water (OSTW) mixture of naphthenic acids were determined using a batch partitioning method for two soils from the Alberta oil sands region. The soils were mineral peat mixtures produced during salvage operations, with Soil 1 having a higher organic carbon fraction (foc) than Soil 2. Naphthenic acids are a significant toxic byproduct of bitumen extraction, and are acutely toxic to aquatic organisms. The sorption of naphthenic acids as affected by a high ionic strength solution was examined using a synthetic groundwater (SGW) mixture.<p>The adsorption isotherms were found to be linear in all cases. All tests were conducted at 4oC, and at a pH of 8.0 ± 0.4, reflective of the conditions in a tailings settling facility near Fort McMurray, AB. The adsorption characteristics of the naphthenic acids in the SGW solution were compared to that of the mixture in Milli-Q water for the two soils. In the presence of SGW, the adsorption coefficient (Kd) for the mixture of naphthenic acids on Soil 1 was an order of magnitude higher than that observed with the same soil and the Milli-Q water mixture, increasing from 1.9 ± 0.2 mL/g to 17.8 ± 1.5 mL/g. The adsorption coefficient for the mixture of naphthenic acids on Soil 2 was also observably higher in the SGW mixture, increasing from 1.3 ± 0.15 mL/g to 3.7 ± 0.2 mL/g. In order to determine whether preferential sorption is exhibited by a particular species within the mixture, the relative fractional abundance of the individual naphthenic acids was plotted as a 3-dimensional histogram for carbon numbers 5 to 37. It was found that for all Z families (where Z is a measure of the number of carbon ring structures), naphthenic acids within the middle range of carbon numbers showed preferential sorption. A two sample t-test confirmed that the naphthenic acids in the carbon number groupings 15 to 24 and 25 to 37 sorbed significantly in the SGW mixture when compared to those in the carbon number grouping of 5 to 14. It was concluded that select constituents of oil sands naphthenic acids mixtures sorb strongly to soil under conditions of elevated salinity and therefore adsorption could be an important attenuating mechanism in groundwater transport. Furthermore, preferential sorption of the individual naphthenic acids is important with respect to toxicity since lower molecular weight naphthenic acids are believed to have a more pronounced toxic effect. Overall, the measured adsorption coefficients indicate that there can be significant sorption of OSTW derived naphthenic acids to soils.
|
55 |
Investigation of water repellency and critical water content in undisturbed and reclaimed soils from the Athabasca Oil Sands Region of Alberta, CanadaHunter, Amanda Evelyn 13 July 2011
Ecosystems are disturbed to extract synthetic crude oil from the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. Successful reclamation of mined oil sands sites depends on maximizing water storage and minimizing the potential for erosion. Soil water repellency in the AOSR affects undisturbed sites and consequently reclamation materials. Extreme water repellency may lead to low infiltration rates and hinder reclamation. There is a lack of information about the naturally occurring and pre-existing levels of soil water repellency in the AOSR. Thus, questions arise about the degree of naturally occurring water repellency and the potential for severe water repellency in reclamation soils.
Studies were conducted on nine sites in the AOSR in the summers of 2008 and 2009. A range of undisturbed and reclaimed sites, as well as mineral and organic reclamation materials were examined. Five undisturbed Jack Pine stands (classified as A ecosites), four reclaimed sites and reclamation materials including mineral soil, peat and leaf and lichen covering the forest floor (LFH) were studied. For a comparison of methods, one grasslands site in central Saskatchewan was included.
Mini and standard tension infiltrometers were compared as a means of measuring soil water repellency index (RI). There was strong variability in RI values between the infiltrometer methods. The mean RI values from the mini infiltrometers were higher than from the standard infiltrometer (9.61 and 3.46, respectively). The variability within sites dominated the variability in RI for the two methods. Despite these obvious trends, RI values between infiltrometer sizes were statistically different for only two individual sites. Increasing the number of sampling points in the second field season did not reduce the variability. The simpler, less expensive mini infiltrometer is as effective as the standard infiltrometer in measuring soil water repellency. This will enable more efficient and extensive monitoring of soil water repellency in reclaimed and undisturbed sites in the AOSR.
Soil water repellency of reclaimed and undisturbed sites was investigated in situ using RI, the water droplet penetration time (WDPT) test, and the molarity of ethanol droplet (MED) test. These measures showed similar trends. Variability in soil water repellency was high at both reclaimed and undisturbed sites. The average RI value for the surface of reclaimed sites was higher than that of the subsurface at reclaimed sites; however, there were no statistical differences between RI values of surface reclaimed and undisturbed sites (P =0.213) due to high spatial variability.
The critical water content (CWC) of reclamation materials was determined by measuring the contact angle (CA) and WDPT. Generally, CA and WDPT were inversely related to water content, though variability was high and the relationship between water content was weak. The clearest relationship between water repellency and water content was present for the mineral soil samples. Reclaimed mineral soil was generally wettable above gravimetric water contents of 5-10 %, while the coarse textured tarball affected materials were only subcritically water repellent. There was no relationship between water repellency and water content for peat and LFH. The degree of water repellency was statistically higher for peat materials with increasing decomposition levels. The average WDPT was 44, 128 and 217 s for fibric, mesic, and humic peat, respectively.
With careful management and monitoring, water repellency may not be a major limitation to reclamation success. The mini tension infiltrometer is an effective method for monitoring soil water repellency in the AOSR.
|
56 |
Net percolation as a function of topographic variation in a reclamation cover over a saline-sodic overburden dumpHilderman, Joel Neil 15 August 2011
Surface mining of oil sands in northern Alberta requires stripping of saline-sodic shale overburden, which is typically placed in large upland overburden dumps. Due to the chemical nature of this shale, engineered soil covers must be constructed over the shale to support the growth of forest vegetation. A research site on South Bison Hill (SBH), a shale overburden dump at the Syncrude Canada Ltd. Mildred Lake Mine, has been used by researchers over the past decade to study the performance of a reclamation cover.
This study was undertaken to improve the understanding of salt and moisture dynamics in the cover-shale system. In particular, the objective of this study was to develop an estimate of the net percolation rate through the cover soil and into the shale overburden. Stable isotope (ä2H and ä18O) measurements obtained from the pore water of soil samples were used to develop stable isotope profiles at various sampling locations along the slope and plateau of the SBH. Simulated profiles were then generated using 2D, finite element numerical modelling software and compared to the measured profiles. Model parameters were obtained from testing and the work of previous researchers. The model results revealed that the net percolation is greatest (32-50 mm/yr) for the plateau and mid-slope bench sample locations. Net percolation rates for sample locations on the slope were lower at 0-12 mm/yr.
The results from the stable isotope modelling were utilized in a SO42- transport model to ascertain if calculated net percolation rates could explain measured salinity profiles. This modelling exercise revealed that calculated SO42- profiles are highly dependent on the assumed SO42- production rates in the shale, which is primarily attributed to pyrite oxidation. The model results showed the isotope-based net percolation rates could explain the measured SO42-profiles for a reasonable range SO42- production rates. The SO42- production rates calculated in the model were greatest for the plateau and mid-slope bench locations and lesser for the sloped locations. The model also showed that the mass of SO42- removed by interflow was minimal compared to the mass generated by pyrite oxidation and that net percolation is the dominant flushing mechanism at net percolation rates of 8 mm/yr or more.
|
57 |
Endophytic fungi associated with pioneer plants growing on the Athabasca oil sandsBao, Xiaohui 04 June 2009 (has links)
Fungal endophytes live inside plants without causing apparent symptoms of infection. All plant species surveyed thus far, including liverworts, mosses, seedless vascular plants, conifers, and angiosperms, harbor one or more endophytic fungi. Fungal endophytes can be divided into four groups including class 1, class 2, class 3 and class 4 endophytic fungi according to host range, colonization pattern, transmission, and ecological function. Class 2 fungal endophytes benefit their host by increasing environmental stress tolerance (i.e. water, temperature, salt) in a habitat-specific manner. In my study, class 2 fungal endophytes were studied from weedy plants growing in an environmentally stressed area: mine tailings from the Athabasca oil sands. This area is a vast hydrocarbon reserve in western Canada that supplies 10% of Canadian oil needs. Hydrocarbons are extracted from tar sands with hot water, alkali, and solvents. The tailing sands can later be remediated (by adding organic material and fertilizer) to establish new plant communities. Prior to remediation, tailing sands have extremely low content of organic carbon and available minerals, and are hydrophobic compared to unimpacted and remediated soils. Nevertheless, <i>Taraxacum</i> (dandelion) and <i>Sonchus</i> (sow-thistle) can colonize extracted tailing sands even prior to remediation. Preliminary results show that pioneer plants have similar fungal abundance as plants of unextracted treatments. Fungal endophytes were isolated from surface sterilized <i>Taraxacum</i> and <i>Sonchus</i> that had been growing upon unimpacted, remediated and extracted soil. Fungi isolated in this way included <i>Alternaria, Tricoderma, Fusarium</i> and an unidentified <i>Perithecial Ascomycote</i>. These endophytic fungi were used to inoculate tomato plants in a greenhouse trial to determine whether they confer stress tolerance to host plants, especially for drought and low mineral nutrition. Before exposing the tomato plants to environmental stresses, the specific endophytic fungal strains applied were successfully recovered from tomato plants originally inoculated with the same endophytic fungi. Although the other endophytic fungi turned out to be harmful to the tomato plants in the test, a <i>Trichoderma spp.</i> strain isolated from samples of extracted treatment appears to confer tolerance of tailing sands to the tomato plants. This <i>Trichoderma spp.</i> strain which we can call <i>TSTh20-1</i> was molecularly identified as <i>Trichoderma harzianum</i>. Despite an identification to species, all strains of <i>T. harzianum</i> are not necessarily identical regarding strain-specific attributes. Using similar techniques described here, it is possible to isolate and potentially use beneficial class 2 endophytic fungal strains for the remediation process in the Athabasca oil sands or to assist plant growth in other high stress environments.
|
58 |
Net percolation as a function of topographic variation in a reclamation cover over a saline-sodic overburden dumpHilderman, Joel Neil 15 August 2011 (has links)
Surface mining of oil sands in northern Alberta requires stripping of saline-sodic shale overburden, which is typically placed in large upland overburden dumps. Due to the chemical nature of this shale, engineered soil covers must be constructed over the shale to support the growth of forest vegetation. A research site on South Bison Hill (SBH), a shale overburden dump at the Syncrude Canada Ltd. Mildred Lake Mine, has been used by researchers over the past decade to study the performance of a reclamation cover.
This study was undertaken to improve the understanding of salt and moisture dynamics in the cover-shale system. In particular, the objective of this study was to develop an estimate of the net percolation rate through the cover soil and into the shale overburden. Stable isotope (ä2H and ä18O) measurements obtained from the pore water of soil samples were used to develop stable isotope profiles at various sampling locations along the slope and plateau of the SBH. Simulated profiles were then generated using 2D, finite element numerical modelling software and compared to the measured profiles. Model parameters were obtained from testing and the work of previous researchers. The model results revealed that the net percolation is greatest (32-50 mm/yr) for the plateau and mid-slope bench sample locations. Net percolation rates for sample locations on the slope were lower at 0-12 mm/yr.
The results from the stable isotope modelling were utilized in a SO42- transport model to ascertain if calculated net percolation rates could explain measured salinity profiles. This modelling exercise revealed that calculated SO42- profiles are highly dependent on the assumed SO42- production rates in the shale, which is primarily attributed to pyrite oxidation. The model results showed the isotope-based net percolation rates could explain the measured SO42-profiles for a reasonable range SO42- production rates. The SO42- production rates calculated in the model were greatest for the plateau and mid-slope bench locations and lesser for the sloped locations. The model also showed that the mass of SO42- removed by interflow was minimal compared to the mass generated by pyrite oxidation and that net percolation is the dominant flushing mechanism at net percolation rates of 8 mm/yr or more.
|
59 |
Health assessment of tree swallows (<i>tachycineta bicolor</i>) nesting on the Athabasca Oil Sands, AlbertaGentes, Marie-Line 08 February 2007 (has links)
Oil sands mining companies in Alberta, Canada, are planning to create wetlands for the bioremediation of mining waste materials as part of a reclamation strategy. To assess feasibility, experimental wetlands mimicking proposed reclamation scenarios were constructed on mining leases. This research assessed the health of tree swallows (<i>Tachycineta bicolor</i>) nesting on these sites where they were naturally exposed to a mixture of chemicals including unrecovered bitumen, naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs). Endpoints reflecting health were compared among three experimental wetlands and one reference site. In order to specifically investigate toxicity of NAs to birds, an experimental exposure to NAs was also conducted on a subset of nestlings on the reference site. <p> In 2003 and 2004, approximately 50 breeding pairs (total, per year) nesting on the following sites were monitored: Suncors Consolidated Tailings and Natural Wetlands; Syncrudes Demo Pond and Poplar Creek reference site. In 2003, reproductive success was very low on OSPM-sites compared to the reference site, but was relatively unaffected in 2004. Compromised reproductive performance in 2003 was linked to harsh weather, during which mortality rates of nestlings reached 100% on the site with the highest levels of PAHs and NAs, while they did not surpass 50% on the reference site. In 2004, mortality rates were low but nestlings from OSPM-sites weighed less and showed greater hepatic detoxification efforts (etoxyresorufin-o-deethylase activity) than those on the reference site. Furthermore, nestlings on OSPM-sites exhibited higher levels of thyroid hormones and suffered parasitic burdens (Protocalliphora spp.) approximately twice that of those on the reference site. Several of these findings may be associated with low post-fledging survival, suggesting that wet landscape reclamation strategy is not optimal for avian species and may require improvement. <p> As part of a separate study investigating toxicity of naphthenic acids, twenty nestlings from the reference site were randomly selected for an experimental exposure. Nestlings received 0.1 ml/day of NAs (15g/L) orally from day 7 to day 13 of age while being reared normally by their free-ranging parents. Nestling growth, hematocrit, blood biochemistry, organ weights and etoxyresorufin-o-deethylase activity (EROD) activity appeared unaffected by naphthenic acids. No toxic changes were detected on histopathological evaluation of major organs. These findings suggest that for nestlings reared on oil sands reclaimed sites, exposure to other chemicals such as polycyclic aromatic hydrocarbons is a greater concern than exposure to NAs. However, this study did not investigate the chronic or reproductive toxicity of naphthenic acids. More research still needs to be conducted as a part of an assessment of the sustainability of wet landscape reclamation because a previous study found that chronic exposure to NAs severely compromised reproduction in mammals.
|
60 |
X-ray microscopy of hydrocarbon-clay interactionsCovelli, Danielle Sarah 30 August 2007 (has links)
One of the critical challenges in the Canadian oil sand industry is improving processes used to separate bitumen from oil sands and to remove clay particulates from produced oil. The fine clay particles are believed to play a significant role in the oil sands industry, from stabilizing process emulsions to fouling problems in water treatment. Addressing the problems caused by these fine clay particulates is limited by the ability to characterize the hydrocarbon-clay interactions.
Scanning Transmission X-ray Microscopy (STXM) is used to study hydrocarbon-clay interactions in controlled model systems, where all components are known, and in process samples extracted from oil sands. To use STXM to study our desired systems, many experimental developments were required. Well developed sample preparation was needed to provide samples free from contaminants and experiments free of artifacts. Clean clays, free of extraneous carbon were required for model studies. A device to reduce photodeposition in the STXM chamber was also required to examine interactions of hydrocarbons on clay surfaces. <p>Using these developments, Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of model clays and model hydrocarbon mixtures were recorded using the STXM microscope on beamline 5.3.2 at the Advanced Light Source, in Berkeley CA. Using NEXAFS spectroscopy in conjunction with the STXM microscope, allowed us to explore preferential interactions between specific hydrocarbon and fine clay particles (smaller than 1 µm) in our model studies. We were also able to assess the chemistry of the hydrocarbons before association with the clay particles. <p>Process samples, consisting of a set of four bitumen froths extracted from the oil sands were investigated. The carbon chemistry of the froths was assessed and quantitatively analyzed. The findings were correlated with previous confocal microscopy results from our collaborators at CANMET Energy Technology Centre in Devon, Alberta.
|
Page generated in 0.0766 seconds