• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 65
  • 17
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 224
  • 82
  • 74
  • 27
  • 25
  • 20
  • 20
  • 20
  • 17
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Subsurface irrigation with saline water on a loamy sand

Soultani, Massoud January 1989 (has links)
No description available.
122

Experiments with subsurface irrigation and drainage on a sandy soil in Quebec

Memon, Nisar Ahmed. January 1985 (has links)
No description available.
123

Denitrification in sandy loam soil as influenced by water table depth and nitrogen fertilization rate

Elmi, Abdirashid A. January 1998 (has links)
No description available.
124

PREDICTING THE PERMEABILITY OF SANDY SOILS FROM GRAIN SIZE DISTRIBUTIONS

Onur, Emine Mercan 28 January 2014 (has links)
No description available.
125

Flood Damage and Vulnerability Assessment for Hurricane Sandy in New York City

Zhang, Fang 02 October 2013 (has links)
No description available.
126

Wave Induced Vertical Pore Pressure Gradients at Sandy Beaches

Florence, Matthew Benedict Skaanning 08 June 2022 (has links)
Predicting sediment transport at sandy beaches is a significant challenge in civil engineering owing to the variability in hydrodynamic, morphological, and geotechnical properties within a site and across multiple sites. Additionally, there are difficulties in measuring in-situ properties, and challenges in identifying and quantifying the different relevant driving and resisting forces. These challenges are further exacerbated in the intertidal zone where the addition of infiltration-exfiltration, wave run-up and run-down, bore collapse, cyclic emergence and submergence of sediments, interactions between standing waves and incident bores, and other processes must be considered. Among these many processes, pore pressure gradients within sandy beach sediments affect sediment transport by reducing the sediment's effective stress to zero (this process is called liquefaction). Despite the known importance of these pressure gradients with respect to sediment transport, there has been little field evidence of the role that these pore pressure gradients have on sediment transport, how they relate to the hydrodynamic properties, and their inclusion into predictive sediment transport equations. This study is based on field measurements of hydrodynamic and geotechnical properties, as well as pore pressure gradients during storm and non-storm conditions at sandy beaches in the intertidal zone. From the analysis of these field measurements, it was found that (1) liquefying pressure gradients are likely to develop in sediments that are rapidly inundated during storm conditions; (2) the magnitude of pore pressure gradients is related to the asymmetry of the pressure gradient and can occur with shoreward-directed near bed velocities; and (3) during non-storm conditions, pressure gradients that often do not exceed liquefaction criteria occurred more (less) frequently during a time period where erosion occurred in large (small) quantities, indicating that small non-liquefying pore pressure gradients may facilitate sediment transport. The results of this study demonstrate that current methods of scour calculations must include effects of pore pressure gradients to reduce error. Additionally, from this work it was found that sediment transport can be directed shoreward under momentary liquefaction. Finally, the results of this study show that sediment pore pressure gradients are related to wave skewness, spatial group steepness, and temporal group steepness which may aid modelling of pore pressure gradients. / Doctor of Philosophy / The transport of sediment particles (in this case, sand grains at beaches) is difficult to predict because of the many different governing processes that can be hard to measure, may be hard to relate to erosion or sediment accumulation specifically, and the variability in sediment and flow properties (grain size, fluid velocity, and others) at a specific location and across different locations. Storms, like hurricanes, tropical storms, and tsunamis, can drastically change the expected water properties (like water depth, wave height, and wave period), and the effects of water pressure within the sand bed. When a wave moves across the sand it causes a change in the water pressure that is within the sand. This water pressure is not the same throughout the sand with depth. When the gradient, or the difference between the water pressure at two different vertical locations, is large enough, the sand behaves like a fluid (like quicksand) and becomes easier to move, this process is called liquefaction. Even though previous work has shown that these pressure gradients (and the resulting liquefaction) is important for sediment transport, there have been few field measurements demonstrating their impact on sediment transport and how these gradients (and the resulting liquefaction) relate to wave and sand properties. This study presents field measurements of pressure gradients, wave and sediment properties, and sediment transport events during both storm and non-storm conditions. From these field measurements, it was shown that (1) during an extreme storm event, pressure gradients that liquefy the sediment are likely to occur on sediments that are not normally subjected to waves; (2) liquefying pressure gradients can occur when waves arrive at the beach, which may cause sediment to be moved shoreward; and (3) during non-storm conditions, pressure gradients that do not liquefy the sand occurred frequently during a sediment transport event, suggesting that these smaller pressure gradients may contribute to sediment transport by reducing the effective weight of the sediment. This work can be used to further understand the behavior of sediment pore pressure gradients, their relation to hydrodynamic properties, and how they influence sediment transport allowing for better predictions of sediment transport, beach nourishment calculations, and the design of coastal structures.
127

Piping plover habitat and demography following storm-induced and engineered landscape change

Robinson, Samantha G. 16 April 2020 (has links)
Understanding the effects of large-scale disturbances and associated management actions on imperiled species can increase conservation value of future management. Piping plovers (Charadrius melodus) are federally threatened and endangered, disturbance-dependent shorebirds, nesting on broad, sparsely vegetated beaches, sandbars, and lakeshores. In October 2012, Hurricane Sandy storm surges cleared vegetation and opened old and new inlets through Fire Island and Westhampton Island, New York, creating plover habitat. Storm effects prompted an island-wide stabilization project, and certain sections of Fire Island were designed to create and/or improve plover habitat (hereafter, restoration areas) to mitigate possible habitat loss or degradation. Many plover populations range-wide appear to be habitat-limited, and we anticipated positive population growth following habitat creation. To help predict what might happen to the plover population following Hurricane Sandy, we evaluated the effects of habitat-creating events at several other locations in the range, evaluating the hypothesis that plover population sizes are habitat limited. We estimated the amount of habitat available before and after four significant storm and flooding events by classifying pre- and post-disturbance aerial imagery and evaluated the population changes that occurred after disturbance-related habitat alterations. Following these habitat creating events, nesting habitat increased 27%–950%, and, subsequently, these plover populations increased overall 72%–622% (increase of 8–217 pairs in 3 to 8 years after the disturbance, average 12–116% increase annually). The demographic changes likely were driven by some combination of productivity and immigration occurring simultaneously with regional increases. We then evaluated population and suitable habitat change on Fire Island and Westhampton Island following Hurricane Sandy. We developed an integrated population model to determine the primary contributors to population and assessed the effect of restoration areas on demographic processes during 2013–2018. We also recorded individual locations of adults and pre-fledge chicks to evaluate effects of post-Hurricane Sandy landscape features on resource selection of adults and chicks, and behavior and survival of plover broods. We evaluated whether breeding stage (pre-breeding, nesting, brooding, post-breeding), simple breeding stage (breeding, not-breeding), or instantaneous behavior class (parental, non-parental) best explained habitat selection during the 5-month plover breeding season. We also evaluated the effects of post-Hurricane Sandy landscape features on resource selection, behavior, and survival of plover broods during 2013–2019. We observed positive population growth in three of five years and overall growth through the study (λ ̅=1.12). Immigration and reproductive output were correlated with population growth (r = 0.93 and 0.74, respectively). Compared to the rest of the study area, restoration areas had higher chick survival but lower nest survival and breeding fidelity, and population growth (λ ̅=1.09) in restoration areas was similar. For adult plovers, behavior class best explained habitat selection. Compared to non-parental plovers, plovers engaged in parental behavior (incubating, brooding, and accompanying chicks, hereafter 'parental') selected areas closer to bay intertidal habitats and with more dry sand. Non-parental plovers avoided areas with more dry sand and did not select for or against bay intertidal habitats. Additionally, non-parental plovers avoided development more than parental plovers and avoided areas of lower elevation more than parental plovers. In each year, there was more suitable habitat for parental plovers than non-parental plovers. Plover broods selected for flatter sites with less vegetation but selected for sites closer to development as time since Hurricane Sandy increased. Chick foraging rates were highest in moist substrates and were negatively influenced by nesting plover density. Chick survival was negatively influenced by nesting plover density and was greater for earlier hatched broods. Further, chick survival was higher following an outbreak of sarcoptic mange in the local red fox (Vulpes vulpes) population. If human interventions were reduced or modified in such a way as to create, maintain, and improve habitat, plover populations likely would reach higher numbers, and the potential for achieving recovery goals would be increased. Future restoration areas projects could use Great Gun as a model, although design criteria could be improved to increase access to moist, flat, low energy foraging sites. Efforts to increase immigration of novel breeding adults into the system, primarily by habitat creation or maintenance, are likely to have the greatest local effect on population growth but may not improve regional population persistence if habitat creation is only local. Management to improve reproductive output is likely to have a positive effect on population growth if there is suitable habitat to support recruits and will improve regional population persistence by producing emigrants. When improving or creating plover habitat, managers should consider habitat needs both for plovers of all life stages. Habitat management should focus on maintaining vegetation-free sand and access to low-elevation foraging habitat. Allowing hurricanes such as Hurricane Sandy to alter the landscape naturally will create these landscape features. / Doctor of Philosophy / Piping plovers (Charadrius melodus) are federally threatened and endangered shorebirds that nest on sandy beaches, sandbars, and lakeshores. In October 2012, Hurricane Sandy created substantial habitat on Fire Island and Westhampton Island, New York, which could have acted as plover habitat. However, concerns about mainland safety from future storms prompted an island-wide project, building dunes planted with beach grass, to improve ability of Fire Island to protect the mainland. However, planted dunes had the potential to negatively affect newly created habitat, and certain sections of Fire Island were designed to create plover nesting habitat. Because of the habitat creation, we predicted that the population would increase. To illustrate that habitat creating events lead to plover population increases, we used freely available aerial imagery and identified all areas of dry and moist sand in study areas. We then used local plover monitoring data to relate habitat change to plover population change, and found that for several hurricanes and floods in the piping plover range, habitat increases led to population increase. We then evaluated population change on Fire Island and Westhampton Island, and found that the population increased 90% following Hurricane Sandy, and the increase was primarily due to new immigrant adults, and local reproductive success. The created restoration areas had similar reproductive output and population growth to the rest of the study area. To determine the areas on Fire Island and Westhampton Island that were adequate habitat for piping plover adults, we compared habitat used by plovers to what was available on the island and determined that habitat use differed between adults exhibiting parental behaviors and adults exhibiting all other behaviors. Non-parental plovers avoided dry sand. Both parental and non-parental plovers avoided development and high elevation sites. Overall, more sand was suitable for parental plovers than non-parental plovers. Because reproductive output also was influential to the population increase on Fire Island, we evaluated effects of landscape features on plover chick habitat, foraging, and survival. Plover chicks avoided vegetation, and selected flatter areas, but selected sites closer to development as time since Hurricane Sandy increased. Chicks spent more time foraging in moist substrates, and less time foraging when there were more plovers nesting in a management unit. Chick survival also was lower when more plovers were nesting in a management unit and was greater for earlier hatched broods. Further, chick survival was higher following a sharp decline in the local red fox (Vulpes vulpes) population. Overall, Hurricane Sandy was a positive force for this local plover population and local efforts to allow hurricane storm surges to modify the island in the future will improve long-term population persistence. Efforts to increase immigration of novel adults into Fire Island and Westhampton Island, primarily by habitat creation or maintenance, are likely to have the greatest local effect on positive population growth. Improving reproductive output is likely to have a positive effect on local and regional population growth, particularly by maintaining a low red fox population, if there is suitable habitat to support recruits. When improving or creating plover habitat, managers should consider habitat needs for plovers across the whole breeding season rather than just nesting. Habitat management should focus on maintaining vegetation-free sand, and access to low-elevation, flat foraging habitat. Habitat creation also may increase habitat amount and therefore local population growth.
128

Constitutive relationships for agricultural soils

Brandon, Joseph Robert January 1987 (has links)
Undrained triaxial tests were conducted to develop the constitutive relationships for two agricultural soils, which could be used for the finite element analysis of multipass effects of vehicles on soil compaction. Sandy-clay and sandy-silt samples were loaded and unloaded three times to levels of 138 kPa to simulate three passes of an agricultural tractor. An axial loading rate of 200 mm/min was used to include the dynamic effects of rapid loading from the vehicles. An Instron Universal Testing Machine was used to provide this loading rate. During the tests, a microcomputer based data acquisition system recorded axial force and strain. The system recorded 28 values per second. Tests were conducted at four confining pressures; 17.2, 24.1, 34.4 and 41.4 kPa. Plots for deviatoric stress and axial strain were found to be bilinear. Initial and latter portions of the curve were assumed to represent the elastic and plastic deformations of the sample, respectively. Assuming an associated flow rule, an elastic-plastic constitutive model was developed based on a Mohr-Coulomb failure surface. The constitutive model developed was evaluated by simulating a triaxial test at a confining pressure of 28 kPa. Initial conditions were computed by substituting the boundary stresses into the model to determine the elastic-plastic matrix. Incremental loads were applied up to the maximum stress level. For each increment of load, the elastic-plastic matrix was updated from the previous load application. The simulated data compared fairly well with experimental results, but tended to overpredict at higher stress levels. Based on a comparison with existing elastic-plastic models, the derived model appears to be well suited for substitution into the finite element method for studying soil compaction resulting from multipass effects of tractors. / M.S.
129

Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model

Huai, W., Yang, L., Wang, W-J., Guo, Yakun, Wang, T., Cheng, Y. 05 September 2019 (has links)
Yes / Based on the Lagrangian approach, this study proposes a random displacement model (RDM) to predict the concentration of suspended sediment in vegetated steady open channel flow. Validation of the method was conducted by comparing the simulated results by using the RDM with available experimental measurements for uniform open-channel flows. The method is further validated with the classical Rouse formula. To simulate the important vertical dispersion caused by vegetation in the sediment-laden open channel flow, a new integrated sediment diffusion coefficient is introduced in this study, which is equal to a coefficient multiplying the turbulent diffusion coefficient. As such, the RDM approach for sandy flow with vegetation was established for predicting the suspended sediment concentration in low-sediment-concentration flow with both the emergent and submerged vegetation. The study shows that the value of for submerged vegetation flow is larger than that for emergent vegetation flow. The simulated result using the RDM is in good agreement with the available experimental data, indicating that the proposed sediment diffusion coefficient model can be accurately used to investigate the sediment concentration in vegetated steady open channel flow. / National Natural Science Foundation (No. 51439007, 11672213, and 11872285); Open Funding of State Key Laboratory of Water Resources and Hydropower Engineering Science (WRHES), Wuhan University (Project No: 2018HLG01)
130

Unraveling the evolution of moral panic: A comparative analysis of school shootings

Webb, Jiavonna Devine 13 August 2024 (has links) (PDF)
School shootings in the United States have garnered significant attention. Since 1999, several high-profile school shootings have taken place across the U.S. in Connecticut, Virginia, Florida, etc. The phenomenon of school shootings and the resultant moral panic is explored by examining media coverage to understand how the media contributes to public responses to these tragic incidents. Although school shootings tend to receive attention, we do not know how this attention can differ across school shootings. This study uses the moral panic framework to assess how national newspaper coverage portrays the Sandy Hook Elementary and Robb Elementary school shootings. I find that the media discourse differs between the two shootings considerably when assessing each attribute of the moral panic framework. This is important as school shootings are reported differently, thus changing public perception. I argue that the level of panic we’ve seen after previous school shootings such as Columbine has decreased.

Page generated in 0.0759 seconds