• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 26
  • 12
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 17
  • 14
  • 13
  • 12
  • 12
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Rôle de la clathrine dans la formation des lamellipodes

Gautier, Jérémie 21 September 2011 (has links) (PDF)
Le complexe Scar/WAVE génère la formation des lamellipodes par l'intermédiaire du complexe Arp2/3 responsable de la polymérisation de réseaux d'actine branchés. Dans le but d'identifier de nouveaux régulateurs du complexe Scar/WAVE, nous avons conduit un crible en cellules de Drosophiles combinant une approche protéomique à une approche de génomique fonctionnelle. La chaîne lourde de la clathrine a été identifiée au cours de ce crible comme une protéine interagissant avec le complexe Scar/WAVE et dont la déplétion affecte la formation des lamellipodes. Ce rôle de la clathrine dans la formation des lamellipodes peut être découplé de son rôle classique dans le transport vésiculaire en utilisant différentes approches. De plus, la clathrine est localisée au lamellipode en l'absence d'adapteurs et des protéines accessoires de l'endocytose. La surexpression de la clathrine affecte le recrutement membranaire du complexe WAVE réduisant ainsi la vélocité des protrusions membranaire et la migration cellulaire. Par opposition, lorsque la clathrine est envoyée artificiellement à la membrane plasmique par une fusion à une séquence myristoylée, on observe une augmentation du recrutement membranaire du complexe Scar/WAVE, de la vélocité des protrusions membranaires et de la migration cellulaire. L'ensemble de ces résultats montrent que la clathrine envoie le complexe Scar/WAVE à la membrane plasmique et donc contrôle la formation des lamellipodes en plus de son rôle plus classique dans le traffic membranaire.
32

Impaired reparative processes in particular related to hyaluronan in various cutaneous disorders : a structural analysis

Bertheim, Ulf January 2004 (has links)
Cutaneous reparative processes, including wound healing, are highly developed procedures in which a chain of actions occurs to reconstitute the function of the wounded tissue. To prevent a delayed or excessive reparative process it is important to understand how this procedure develops and is maintained. One of the major extracellular matrix components of the skin is the glycosaminoglycan hyaluronan (HA). HA contributes to an extracellular environment, which is permissive for cell motility and proliferation, features that may account for HA’s unique properties observed in scarless foetal wound healing. The molecule is found at high concentration whenever proliferation, regeneration and repair of tissue occur. The aims of the present studies were to analyse the distribution of HA and to investigate its possible role in various cutaneous conditions associated with an impaired reparative process like in scar tissue formation in healing wounds, changed skin characteristics in diabetes mellitus and proliferating activity in basal cell carcinomas. Tissue biopsies were obtained from healthy human skin, type-I diabetic skin and various scar tissues. The samples were analysed in the light microscope with a hyaluronan-binding-probe, antibodies for collagen I, III, PCNA and Ki-67. Ultrastructural analyses were performed on the same tissue samples. In normal skin HA was present mainly in the papillary dermis. In epidermis HA was located in between the keratinocytes in the spinous layer. In the different scar tissues the localization of HA varied, with an HA distribution in mature scar type resembling that in normal skin. In keloids the papillary dermis lacked HA, but the thickened epidermis contained more HA than the other scar types. Ultrastructural studies of keloids revealed an altered collagen structure in the dermal layers, with an abundance of thin collagen fibers in the reticular dermis and thicker collagen fibers in the papillary dermis. Furthermore, the keloids displayed epidermal changes, which involved the basement membrane (BM), exhibiting fewer hemidesmosomes, and an altered shape of desmosomes in the entire enlarged spinous layer. These alterations in epidermis are suggested to influence the hydrodynamic and cell regulatory properties of the wounded skin. In diabetic patients, a reduced HA staining in the basement membrane zone was seen. The staining intensity of HA correlated to the physical properties of the skin reflected by their grades of limited joint mobility (LJM). Furthermore, the HA staining correlated with serum concentration of the HbA1c. In basal cell carcinomas (BCC), HA occurred predominantly in the tumour stroma. The distribution was most intense in the highly developed superficial BCC type, and resembled that of the papillary dermis of normal skin. In contrast, in the infiltrative BCC type, the tumour stroma stained weakly in the infiltrative part of the tumour. Moreover, the surrounding dermal layer was deranged and devoid of HA. The findings suggest that the tumour stroma in superficial BCC causes a slow, well-regulated cell growth in which the tumour cells do not substantially disturb the normal skin function. In the infiltrative BCC type, the tumour cells cause a disintegration of the tumour stroma as well as the normal surrounding dermis, which permits further spreading of the tumour. In fact, the behaviour of the infiltrative BCC tumour, growing beyond its boundaries, resembles that of the keloid. The mapping of the distribution of HA could be a useful tool for prognostic information, for evaluating the degree of progress and for deciding the choice of treatment in various diseases of the skin. In skin malignancies such as BCC it can be used to determine the radicality at the surgical excision of the tumour. Keywords: Hyaluronan, scar tissue, diabetes mellitus, basal cell carcinoma, skin, wound healing
33

Structural Determinants of T Wave Alternans in Patients with Cardiomyopathy

Suszko, Adrian 26 March 2012 (has links)
Structural barriers can promote discordant action potential (AP) duration alternans, T wave alternans (TWA) and tachyarrhythmia in animal hearts and simulation studies. We hypothesized that heterogeneous scar (gray zone) and dense midwall scar (midwall core) would promote TWA in patients with cardiomyopathy by slowing conduction and uncoupling transmural APs, respectively. Scar core and gray zone were quantified in 40 cardiomyopathy patients using late gadolinium enhanced cardiac magnetic resonance imaging and related to the results of a clinically validated TWA test. The percentages of gray zone, epicardial core and midwall core were greater in the +TWA group, correlated with TWA magnitude and related to a lower heart rate onset for TWA. These specific scar patterns contribute to the genesis and severity of TWA in cardiomyopathy. Greater knowledge of the substrates that promote TWA in cardiomyopathy patients is valuable in determining those at risk of lethal ventricular arrhythmias.
34

Structural Determinants of T Wave Alternans in Patients with Cardiomyopathy

Suszko, Adrian 26 March 2012 (has links)
Structural barriers can promote discordant action potential (AP) duration alternans, T wave alternans (TWA) and tachyarrhythmia in animal hearts and simulation studies. We hypothesized that heterogeneous scar (gray zone) and dense midwall scar (midwall core) would promote TWA in patients with cardiomyopathy by slowing conduction and uncoupling transmural APs, respectively. Scar core and gray zone were quantified in 40 cardiomyopathy patients using late gadolinium enhanced cardiac magnetic resonance imaging and related to the results of a clinically validated TWA test. The percentages of gray zone, epicardial core and midwall core were greater in the +TWA group, correlated with TWA magnitude and related to a lower heart rate onset for TWA. These specific scar patterns contribute to the genesis and severity of TWA in cardiomyopathy. Greater knowledge of the substrates that promote TWA in cardiomyopathy patients is valuable in determining those at risk of lethal ventricular arrhythmias.
35

The anti-inflammatory potential of quercetin and L-2-oxothiazolidine-4-carboxylate (OTC) in developing scar tissue

Cox, Nicole 10 September 2008
Loss of physiological function, uncomfortable symptoms and various disease processes are thought to be directly related to the formation of scar tissue following tissue damage. Between ten and thirty percent of patients requiring spinal surgery suffer from failed back surgery syndrome. The pain and instability resulting from failed back syndrome often requires medical treatment and may even require additional surgeries to alleviate its associated symptoms. Following surgery, scar tissue forms that often becomes adherent to the dura and entangled in the ganglia and nerve fibers of the spinal nerves. This scar tissue is considered to play a major role in the development of failed back syndrome. Following tissue injury, excessive oxidative stress and inflammation are considered to be the primary stimulators behind increased fibroblast proliferation and activation, resulting in abundant extracellular matrix deposition. The excessive laying down of extracellular matrix ultimately leads to abundant scar tissue formation. I hypothesized that reducing oxidative stress and inflammation will mitigate scar tissue formation and produce a better outcome after spinal surgeries. Quercetin is a dietary flavonoid with anti-oxidant and anti-inflammatory properties that has been shown to improve the outcome following injury to the spinal cord and reduce the proliferation of fibroblasts. L-2-Oxothiazolidine-4-carboxylate (OTC) also minimizes inflammation and protects against oxidative stress by promoting the synthesis of the potent antioxidant and anti-inflammatory agent glutathione. OTC reduces airway inflammation in asthma models and is potentially capable of modulating extracellular matrix production. <p>Treatment with these two agents was hypothesized to decrease oxidative stress and inflammation, thereby causing an amelioration of scar tissue formation following spinal surgery and improve the outcome. Morphological changes observed initially indicated that improvements in wound healing were occurring in the experimentally treated tissues. In addition, the scar tissue area and the lateral widths of the peridural scar forming between the muscular tissue areas suggested a reduction in the scar size. Although inflammatory cell numbers increased slightly in the experimental treatment groups, particularly during the initial three day post laminectomy time point, this increase was not statistically significant. <p>While quercetin and OTC did not appear to inhibit the influx of inflammatory cells following laminectomy, they did appear to induce a more beneficial wound healing environment. It is possible that these agents are affecting parameters of wound healing not considered by these studies. For instance the myriad of processes mediated by growth factors and cytokines involved in wound healing process may play a much greater role than the inflammatory cells themselves. In conclusion, reducing oxidative stress and inflammation by these agents to ameliorate scar tissue formation following spinal laminectomy was supported by the observed morphology, but not supported by the quantification of inflammatory cells. Additional studies investigating the efficacy of quercetin and OTC on the wound healing process are needed to further understand the role they play in repair and scar tissue formation.
36

Synchrotron infrared microspectroscopy of biological tissues: brain tissue from TgCRND8 Alzheimer’s disease mice and developing scar tissue in rats

Rak, Margaret 10 April 2007 (has links)
Biological tissues were studied with synchrotron infrared (IR) microspectroscopy, a technique that allows the spatially resolved determination and mapping of multiple components in situ at high spatial resolution. The first project involved studying brain tissue from TgCRND8 mice, a transgenic model of Alzheimer’s disease (AD). AD is the main cause of dementia in the ageing population, marked by the deposition of plaques composed of the Aβ peptide. Dense-cored and diffuse plaques were IR mapped and the results correlated with histochemistry and immunostaining. Spectral analysis confirmed that congophilic plaque cores were composed of highly aggregated protein in a β-sheet conformation. The amide I maximum of plaque cores was 1623 cm-1; there was no evidence of the high frequency (1680-1690 cm-1) peak seen in in vitro Aβ fibrils and attributed to anti-parallel β-sheet. A significant elevation in phospholipids was found around dense-cored plaques in TgCRND8 mice ranging in age from 5 to 21 months. This was due to an increase in cellular membranes from dystrophic neurites and glial cells around the core, but could also contribute to Aβ aggregation through the interaction of newly secreted Aβ with phospholipids. In contrast, diffuse plaques were not associated with infrared detectable changes in protein secondary structure or relative concentrations of other tissue components. In addition, focally elevated deposits of creatine, a molecule with a crucial role in energy metabolism, were discovered in AD brain tissue with IR microspectroscopy. The creatine deposits may be a previously undiscovered disease marker. A second project was part of a larger Natural Sciences and Engineering Research Council Collaborative Health Research Project (NSERC-CHRP) to test the hypothesis that treatment with anti-oxidants, L-2-oxo-thiazolidine-4-carboxylate (OTC) and quercetin, following spinal surgery may reduce oxidative stress, inflammation, and scarring. The effect of OTC and quercetin on scar tissue formation was evaluated in rats that had undergone laminectomy. Synchrotron IR microspectroscopy data were collected on scar tissue from OTC, quercetin and saline (control) treated animals, sacrificed at 3 and 21 days post-surgery. Spectral differences could be correlated with the stages of wound healing. / May 2007
37

Development of molecular markers for marker assisted selection for seed quality traits in oilseed rape

Rahman, Md. Mukhlesur 28 September 2007 (has links)
Molecular markers for seed quality traits including erucic acid content genes, seed coat color genes in Brassica napus and seed coat color genes in B. rapa were developed. A single base change in the Bn-FAE1.1 gene in the A genome and a two-base deletion in the Bn-FAE1.2 gene in the C genome produce the nearly zero content of erucic acid observed in canola. The single base change was detected as single nucleotide polymorphic (SNP) marker with an ABI SNaPshot kit. A multiplexing primer set was designed by adding a polyT to the 5´ primer end to increase SNP detection throughput through sample pooling. The two-base deletion in the C genome gene was detected as a sequence characterized amplified region (SCAR) marker in an ABI 3100 Genetic analyzer. To increase the throughput, one genome specific primer was labeled with four fluorescence dyes and combined with 20 different primers to produce PCR products with different fragment sizes. These multiplexed high throughput molecular markers have been successfully implemented in our canola/rapeseed breeding programs. Trigenic inheritance was observed for seed coat color in B. napus. Three Sequenced Related Amplified Polymorphism (SRAP) markers very closely linked to the three different seed coat color genes were developed. Chromosome-walking technology was used to convert the SRAP marker into a SCAR marker and a SNP marker. Subsequently, the first seed coat color gene (Bn1) marker was converted into a SCAR marker, and the second seed coat color gene (Bn2) marker was converted into a SNP marker. Digenic inheritance was observed for seed coat color genes in B. rapa. A SRAP marker was identified as being tightly linked to the major seed coat color gene (Br1). The SRAP marker was sequenced and extended sequences were obtained using chromosome-walking technology. The flanking sequences of the SRAP marker contained 24 SNPs and a 12-bp deletion position that allowed the marker to be converted into a co-dominant SNP marker and a co-dominant SCAR marker, respectively. The SCAR marker was detected in the ABI 3100 genetic analyzer with four fluorescently labeled M13 primers integrated with different SCAR primers, which permitted pooling of PCR samples for high throughput detection. / October 2007
38

The anti-inflammatory potential of quercetin and L-2-oxothiazolidine-4-carboxylate (OTC) in developing scar tissue

Cox, Nicole 10 September 2008 (has links)
Loss of physiological function, uncomfortable symptoms and various disease processes are thought to be directly related to the formation of scar tissue following tissue damage. Between ten and thirty percent of patients requiring spinal surgery suffer from failed back surgery syndrome. The pain and instability resulting from failed back syndrome often requires medical treatment and may even require additional surgeries to alleviate its associated symptoms. Following surgery, scar tissue forms that often becomes adherent to the dura and entangled in the ganglia and nerve fibers of the spinal nerves. This scar tissue is considered to play a major role in the development of failed back syndrome. Following tissue injury, excessive oxidative stress and inflammation are considered to be the primary stimulators behind increased fibroblast proliferation and activation, resulting in abundant extracellular matrix deposition. The excessive laying down of extracellular matrix ultimately leads to abundant scar tissue formation. I hypothesized that reducing oxidative stress and inflammation will mitigate scar tissue formation and produce a better outcome after spinal surgeries. Quercetin is a dietary flavonoid with anti-oxidant and anti-inflammatory properties that has been shown to improve the outcome following injury to the spinal cord and reduce the proliferation of fibroblasts. L-2-Oxothiazolidine-4-carboxylate (OTC) also minimizes inflammation and protects against oxidative stress by promoting the synthesis of the potent antioxidant and anti-inflammatory agent glutathione. OTC reduces airway inflammation in asthma models and is potentially capable of modulating extracellular matrix production. <p>Treatment with these two agents was hypothesized to decrease oxidative stress and inflammation, thereby causing an amelioration of scar tissue formation following spinal surgery and improve the outcome. Morphological changes observed initially indicated that improvements in wound healing were occurring in the experimentally treated tissues. In addition, the scar tissue area and the lateral widths of the peridural scar forming between the muscular tissue areas suggested a reduction in the scar size. Although inflammatory cell numbers increased slightly in the experimental treatment groups, particularly during the initial three day post laminectomy time point, this increase was not statistically significant. <p>While quercetin and OTC did not appear to inhibit the influx of inflammatory cells following laminectomy, they did appear to induce a more beneficial wound healing environment. It is possible that these agents are affecting parameters of wound healing not considered by these studies. For instance the myriad of processes mediated by growth factors and cytokines involved in wound healing process may play a much greater role than the inflammatory cells themselves. In conclusion, reducing oxidative stress and inflammation by these agents to ameliorate scar tissue formation following spinal laminectomy was supported by the observed morphology, but not supported by the quantification of inflammatory cells. Additional studies investigating the efficacy of quercetin and OTC on the wound healing process are needed to further understand the role they play in repair and scar tissue formation.
39

An in vitro model of the brain tissue reaction to chronically implanted recording electrodes reveals essential roles for serum and bFGF in glial scarring

Polikov, Vadim Steven January 2009 (has links)
<p>Chronically implanted recording electrode arrays linked to prosthetics have the potential to make positive impacts on patients suffering from full or partial paralysis [1;2]. Such arrays are implanted into the patient's cortical tissue and record extracellular potentials from nearby neurons, allowing the information encoded by the neuronal discharges to control external devices. While such systems perform well during acute recordings, they often fail to function reliably in clinically relevant chronic settings [3]. Available evidence suggests that a major failure mode of electrode arrays is the brain tissue reaction against these implants (termed the glial scar), making the biocompatibility of implanted electrodes a primary concern in device design. Previous studies have focused on modifying the form factor of recording arrays, implanting such arrays in experimental animals, and, upon explantation, evaluating the glial scarring in response to the implant after several weeks in vivo. Because of a lack of information regarding the mechanisms involved in the tissue reaction to implanted biomaterials in the brain, it is not surprising that these in vivo studies have met with limited success. This dissertation describes the development of a simple, controlled in vitro model of glial scarring and the utilization of that model to probe the cellular and molecular mechanisms behind glial scarring.</p><p>A novel in vitro model of glial scarring was developed by adapting a primary cell-based system previously used for studying neuroinflammatory processes in neurodegenerative disease [4]. Midbrains from embryonic day 14 Fischer 344 rats were mechanically dissociated and grown on poly-D-lysine coated 24 well plates to a confluent layer of neurons, astrocytes, and microglia. The culture was injured with either a mechanical scrape or foreign-body placement (segments of 50 mm diameter stainless steel microwire), fixed at time points from 6 h to 10 days, and assessed by immunocytochemistry. Microglia invaded the scraped wound area at early time points and hypertrophied activated astrocytes repopulated the wound after 7 days. The chronic presence of microwire resulted in a glial scar forming at 10 days, with microglia forming an inner layer of cells coating the microwire, while astrocytes surrounded the microglial core with a network of cellular processes containing upregulated GFAP. Neurons within the culture did not repopulate the scrape wound and did not respond to the microwire, although they were determined to be electrically active through patch clamp recording. </p><p>This initial model recreated many of the hallmarks of glial scarring around electrodes used for recording in the brain; however, the model lacked the reproducibility necessary to establish a useful characterization tool. After the protocol was amended to resemble protocols typically used to culture neural stem/precursor cells, an intense scarring reaction was consistently seen [5]. To further optimize and characterize the reaction, six independent cell culture variables (growth media, seeding density, bFGF addition day, serum concentration in treatment media, treatment day, and duration of culture) were varied systematically and the resulting scars were quantified. The following conditions were found to give the highest level of scarring: Neurobasal medium supplemented with B27, 10% fetal bovine serum at treatment, 10 ng/ml b-FGF addition at seeding and at treatment, treatment at least 6 days after seeding and scar growth of at least 5 days. Seeding density did not affect scarring as long as at least 500,000 cells were seeded per well, but appropriate media, bFGF, and serum were essential for significant scar formation. </p><p>The optimized in vitro model was then used to help uncover the underlying molecular and cellular mechanisms behind glial scarring. A microwire coating that mimics the basal lamina present within glial scars was developed that allows cells responding to the coated microwire to be isolated and evaluated (i.e. through cell counting or cell staining). A panel of soluble factors known to be involved in glial scar formation was added to the media and the cellular response was recorded. The extent of cell accumulation on the coated microwires was significantly increased by titration of the culture with serum, the pleotropic growth factor bFGF, the inflammatory cytokines IL-1&alpha; and IL-1&beta;, and the growth factors PDGF and BMP-2. The other fourteen soluble factors tested had little to no effect on the number of cells that attached to the coated microwires, although a specific blocker of the bFGF receptor was able to abrogate the effect of bFGF. This study proposes essential roles in glial scarring of serum, which infiltrates brain tissue upon disruption of the blood-brain barrier, and bFGF, which is a necessary growth and survival factor for the neural precursor cells that respond to injury. These insights suggest repeated rounds of implant micromotion-induced cellular damage, with the resultant neuronal death, serum release, and bFGF deposition may thicken the glial scar and lead to recording signal loss.</p> / Dissertation
40

Development of SCAR marker linked to a root-knot nematode resistant gene in peanut

Yang, Hee Jeong 15 November 2004 (has links)
Root-knot disease caused by Meloidogyne spp. is the most important nematode disease of peanut. Even though many management strategies have been applied to control this disease on peanut, resistance is the most recommendable. Marker-assisted selection has been used as a useful tool for screening of resistant individuals in segregating populations. However, it requires many laborious steps. Thus, there is a need for PCR - based markers, which are more practical, rapid, and efficient. In this study, we tried to develop a SCAR marker linked to root-knot nematode resistance locus in peanut based on the RFLP marker R2430E. The entire sequence of R2430E was 2217 bp and contained one putative open reading frame (ORF) of 713 nucleotides. Thirteen primers including 5 forward and 8 reverse primers were synthesized to sequence the entireR2430E. Based on the results of BLAST searches, R2430E appeared to encode an AAA ATPase containing von Willebrand factor type A (VWA) domain from Magnetococcus sp. MC-1 (106 bits). To determine if there is a portion of the R2430E that hybridizes only to a band co-segregating with the resistance locus, we generated 4 probes spanning different parts of the gene. Southern analysis using these probes revealed identical banding patterns for each probe. Therefore, we concluded that there is very limited if any sequence polymorphism between different alleles detected by the R2430E probe. Additionally, this conclusion is supported by the experiment in which we tested 25 primer pairs derived from the R2430E using genomic DNA from both resistance and susceptible genotypes. In this experiment, all primer pairs amplified identical PCR fragments, suggesting again that there is little or no sequence divergence between putative alleles as differentiated by southern blotting. To identify possible single nucleotide polymorphisms (SNPs) between polymorphic R2430E RFLP bands, we cloned several fragments that span the entire R2430E transcribed sequence. Surprisingly, no SNPs were identified in the transcribed region of this gene. We propose that polymorphism detected by this RFLP marker is outside of the R2430E.

Page generated in 0.0633 seconds