1 |
Magnetotransport Properties of AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbxLukic- Zrnic, Reiko 05 1900 (has links)
Multilayer structures of AlxIn1-xAsySb1-y/GaSb (0.37 £ x £ 0.43, 0.50 £ y £ 0.52), grown by molecular beam epitaxy on GaSb (100) substrates were characterized using variable temperature Hall and Shubnikov-de Haas techniques. For nominally undoped structures both p and n-type conductivity was observed. The mobilities obtained were lower than those predicted by an interpolation method using the binary alloys; therefore, a detailed analysis of mobility versus temperature data was performed to extract the appropriate scattering mechanisms. For p-type samples, the dominant mechanism was ionized impurity scattering at low temperatures and polar optical phonon scattering at higher temperatures. For n-type samples, ionized impurity scattering was predominant at low temperatures, and electron-hole scattering dominated for both the intermediate and high temperature range. Analyses of the Shubnikov-de Haas data indicate the presence of 2-D carrier confinement consistent with energy subbands in GaAszSb1-z potential wells. Epilayers of GaAs1-xSbx (0.19<x<0.71), grown by MBE on semi-insulating GaAs with various substrate orientations, were studied by absorption measurements over the temperature range of 4-300 K. The various substrate orientations were chosen to induce different degrees of spontaneous atomic ordering. The temperature dependence of the energy gap (Eg) for each of these samples was modeled using three semi-empirical relationships. The resulting coefficients for each model describe not only the temperature dependence of Eg for each of the alloy compositions investigated, but also for all published results for this alloy system. The effect of ordering in these samples was manifested by a deviation of the value of Eg from the value of the random alloy. The presence of CuPt-B type atomic ordering was verified by transmission electron diffraction measurements, and the order parameter was estimated for all the samples investigated and found to be larger for the samples grown on the (111) A offcut orientations. This result strongly suggests that it is the A steps that contribute to the formation of the CuPt-B type ordering in the GaAs1-xSbx alloy system.
|
2 |
Radar simulation of human activities in non line-of-sight environmentsSundar Ram, Shobha, 1982- 13 August 2012 (has links)
The capability to detect, track and monitor human activities behind building walls and other non-line-of-sight environments is an important component of security and surveillance operations. Over the years, both ultrawideband and Doppler based radar techniques have been researched and developed for tracking humans behind walls. In particular, Doppler radars capture some interesting features of the human radar returns called microDopplers that arise from the dynamic movements of the different body parts. All the current research efforts have focused on building hardware sensors with very specific capabilities. This dissertation focuses on developing a physics based Doppler radar simulator to generate the dynamic signatures of complex human motions in nonline-of-sight environments. The simulation model incorporates dynamic human motion, electromagnetic scattering mechanisms, channel propagation effects and radar sensor parameters. Detailed, feature-by-feature analyses of the resulting radar signatures are carried out to enhance our fundamental understanding of human sensing using radar. First, a methodology for simulating the radar returns from complex human motions in free space is presented. For this purpose, computer animation data from motion capture technologies are exploited to describe the human movements. Next, a fast, simple, primitive-based electromagnetic model is used to simulate the human body. The microDopplers of several human motions such as walking, running, crawling and jumping are generated by integrating the animation models of humans with the electromagnetic model of the human body. Next, a methodology for generating the microDoppler radar signatures of humans moving behind walls is presented. This involves combining wall propagation functions derived from the finite-difference time-domain (FDTD) simulation with the free space radar simulations of humans. The resulting hybrid simulator of the human and wall is used to investigate the effects of both homogeneous and inhomogeneous walls on human microDopplers. The results are further corroborated by basic point-scatterer analysis of different wall effects. The wall studies are followed by an analysis of the effects of flat grounds on human radar signatures. The ground effect is modeled using the method of images and a ground reflection coefficient. A suitable Doppler radar testbed is developed in the laboratory for simulation validation. Measured data of different human activities are collected in both line-of-sight and through-wall environments and the resulting microDoppler signatures are compared with the simulation results. The human microDopplers are best observed in the joint timefrequency space. Hence, suitable joint time-frequency transforms are investigated for improving the display and the readability of both simulated and measured spectrograms. Finally, two new Doppler radar paradigms are considered. First, a scenario is considered where multiple, spatially distributed Doppler radars are used to measure the microDopplers of a moving human from different viewing angles. The possibility of using these microDoppler data for estimating the positions of different point scatterers on the human body is investigated. Second, a scenario is considered where multiple Doppler radars are collocated in a two-dimensional (2-D) array configuration. The possibility of generating frontal images of human movements using joint Doppler and 2-D spatial beamforming is considered. The performance of this concept is compared with that of conventional 2-D array processing without Doppler processing. / text
|
3 |
From cuprates to manganites: spin and orbital liquidsKilian, Rolf 05 July 1999 (has links) (PDF)
Both cuprates and manganites belong to the transition metal oxides. The physics of these compounds is characterized by a dualism of local electron interaction and itinerant charge motion. In the present work, several key issues of metallic cuprates and manganites are addressed on a theoretical level, while close connection to recent experimental work is kept. The work is based on the notion of spin and orbital liquids, representing elegant tools to handle the strongly correlated nature of the metallic state in an efficient and transparent manner. A concise introduction to the physics of cuprates and manganites as well as to the methods employed is presented at the beginning of the work. In a subsequent part, we show that the peculiar magnetic response of metallic cuprates upon impurity doping can be successfully explained within a spin-liquid picture. The remainder of the work is devoted to the metallic state of manganites. Elaborating on the notion of an orbital liquid, the interplay of electron correlations, orbital degeneracy, and double exchange is studied. Thereby, the unconventionally large incoherent optical spectrum of metallic manganites and the pronounced softening of the magnon spectrum observed in experiment can be explained. Finally, a theory of the metal-insulator transition of manganites is presented which is based upon the newly introduced notion of orbital polarons. In general, we believe the close agreement of our results with experiment to strongly support the validity of our approach, giving new insight into the spectacular and sometimes as-tonishing physics of transition metal oxides.
|
4 |
From cuprates to manganites: spin and orbital liquidsKilian, Rolf 26 July 1999 (has links)
Both cuprates and manganites belong to the transition metal oxides. The physics of these compounds is characterized by a dualism of local electron interaction and itinerant charge motion. In the present work, several key issues of metallic cuprates and manganites are addressed on a theoretical level, while close connection to recent experimental work is kept. The work is based on the notion of spin and orbital liquids, representing elegant tools to handle the strongly correlated nature of the metallic state in an efficient and transparent manner. A concise introduction to the physics of cuprates and manganites as well as to the methods employed is presented at the beginning of the work. In a subsequent part, we show that the peculiar magnetic response of metallic cuprates upon impurity doping can be successfully explained within a spin-liquid picture. The remainder of the work is devoted to the metallic state of manganites. Elaborating on the notion of an orbital liquid, the interplay of electron correlations, orbital degeneracy, and double exchange is studied. Thereby, the unconventionally large incoherent optical spectrum of metallic manganites and the pronounced softening of the magnon spectrum observed in experiment can be explained. Finally, a theory of the metal-insulator transition of manganites is presented which is based upon the newly introduced notion of orbital polarons. In general, we believe the close agreement of our results with experiment to strongly support the validity of our approach, giving new insight into the spectacular and sometimes as-tonishing physics of transition metal oxides.
|
5 |
Investigation of the magnetic and electronic structure of Fe in molecules and chalcogenide systemsTaubitz, Christian 09 June 2010 (has links)
In this work the electronic and magnetic structure of the crystals Sr2FeMoO6,
Fe0.5Cu0.5Cr2S4, LuFe2O4 and the molecules FeStar, Mo72Fe30, W72Fe30 are investigated
by means of X-ray spectroscopic techniques. These advanced materials exhibit very interesting properties like magnetoresistance or multiferroic behaviour. In case of the molecules they also could be used as spin model systems. A long standing issue concerning the investigation of these materials are contradicting results found for the magnetic and electronic state of the iron (Fe) ions present in these compounds. Therefore this work focuses on the Fe state of these materials in order to elucidate reasons for these problems. Thereby the experimental results are compared to multiplet simulations.
|
Page generated in 0.0764 seconds