• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'anneau de cohomologie des résolutions crépantes de certaines singularités-quotient

Garino, Sébastien 25 June 2007 (has links) (PDF)
Le quotient géométrique d'une variété lisse par l'action d'un groupe fini préservant le volume est une variété singulière. La correspondance de McKay relie la géométrie des résolutions crépantes du quotient et la géométrie de l'action sur la variété lisse. Sous certaines hypothèses, le schéma de Hilbert équivariant de la variété lisse est une résolution crépante. Nous interprétons ce schéma en terme de grassmannienne d'algèbres équivariante, afin d'en déduire une description explicite. D'après la conjecture de Ruan, modulo une déformation quantique, l'anneau de cohomologie d'une résolution crépante est isomorphe à l'anneau de cohomologie orbifold du quotient. Pour le quotient d'une variété de dimension trois locale (espace vectoriel avec action linéaire) ou compacte, nous calculons l'anneau de cohomologie des résolutions crépantes. Dans le cas local, un exemple montre la nécessité de la déformation quantique dans la conjecture. Dans le cas compact, l'analogie entre les deux anneaux conforte la conjecture.
2

Exemples de schémas de Hilbert invariants et de schémas quot invariants

Jansou, Sébastien 24 October 2005 (has links) (PDF)
Dans une première partie, on se donne un groupe réductif connexe complexe G, et on classifie les modules simples dont le cône des vecteurs primitifs admet une déformation G-invariante non triviale. On relie cette classification à celle des algèbres de Jordan simples, et aussi à celle (due à Akhiezer) des variétés projectives lisses dont les orbites sous l'action d'un groupe algébrique affine connexe sont un diviseur et son complémentaire. Notre principal outil est le schéma de Hilbert invariant d'Alexeev et Brion; on en détermine les premiers exemples. On détermine aussi les déformations infinitésimales (non nécessairement G-invariantes) des cônes des vecteurs primitifs; elles sont triviales pour presque tous les modules simples. Dans une seconde partie, on construit le ``schéma Quot invariant'' et on en détermine une classe d'exemples dans le cas où l'espace ambiant est un cône des vecteurs primitifs.
3

Correspondance de McKay : variations en dimension trois

TÉROUANNE, Sophie 25 June 2004 (has links) (PDF)
Le thème central de cette thèse est la correspondance de McKay en dimension trois. Soit $X$ un schéma projectif lisse sur un corps $k$ et $G$ un groupe réductif fini. Dans un premier temps, on s'intéresse au schéma de Hilbert $G$-équivariant de $X$. On le définit dans un cadre général et on construit le morphisme de Hilbert-Chow par une méthode de linéarisation du déterminant. On étudie alors le cas particulier où le quotient $X/G$ est lisse. Dans un deuxième temps, on étudie une famille de singularités de dimension trois qui admettent deux résolutions crépantes naturelles : l'une est le schéma de Hilbert équivariant, et l'autre est le résultat d'un processus de désingularisation de singularités de points doubles. On calcule les fibres de ces deux résolutions et on conclut que le schéma de Hilbert donne une résolution plus naturelle au sens de McKay. On donne alors une interprétation de ce schéma en tant qu'espace modulaire d'une famille de fibrés vectoriels. Enfin, on s'intéresse à la catégorie dérivée équivariante. On donne une version $G$-équivariante du théorème de Be\u(\i)linson, puis on compare la catégorie dérivée $G$-équivariante de $X$ et la catégorie dérivée du quotient $X/G$ en déterminant l'image du foncteur $(\bf L)\pi^* : (\cal D)(X/G)\rightarrow (\cal D)^G(X)$.
4

Schémas de Hilbert invariants et théorie classique des invariants / Invariant Hilbert Schemes and classical invariant theory

Terpereau, Ronan 05 November 2012 (has links)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment. / Let W be an affine variety equipped with an action of a reductive group G. The invariant Hilbert scheme is a moduli space which classifies the G-stable closed subschemes of W such that the affine algebra is the direct sum of simple G-modules with previously fixed finite multiplicities. In this thesis, we first study the invariant Hilbert scheme, denoted H. It parametrizes the GL(V)-stable closed subschemes Z of W=n1 V oplus n2 V^* such that k[Z] is isomorphic to the regular representation of GL(V) as GL(V)-module. If dim(V)<3, we show that H is a smooth variety, so that the Hilbert-Chow morphism gamma: H -> W//G is a resolution of singularities of the quotient W//G. However, if dim(V)=3, we show that H is singular. When dim(V)<3, we describe H by equations and also as the total space of a homogeneous vector bundle over the product of two Grassmannians. Then we consider the symplectic setting by letting n1=n2 and replacing W by the zero fiber of the moment map mu: W -> End(V). We study the invariant Hilbert scheme H' which parametrizes the subschemes included in mu^{-1}(0). We show that H' is always reducible, but that its main component Hp' is smooth if dim(V)<3. In this case, the Hilbert-Chow morphism is a resolution of singularities (sometimes a symplectic one) of the quotient mu^{-1}(0)//G. When dim(V)=3, we describe Hp' as the total space of a homogeneous vector bundle over a flag variety. Finally, we get similar results when we replace GL(V) by some other classical group (SL(V), SO(V), O(V), Sp(V)) acting first on W=nV, then on the zero fiber of the moment map.
5

Schémas de Hilbert invariants et théorie classique des invariants

Terpereau, Ronan 05 November 2012 (has links) (PDF)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment.

Page generated in 0.4921 seconds