Spelling suggestions: "subject:"correspondance dde 1clay"" "subject:"correspondance dde 2clay""
1 |
L'anneau de cohomologie des résolutions crépantes de certaines singularités-quotientGarino, Sébastien 25 June 2007 (has links) (PDF)
Le quotient géométrique d'une variété lisse par l'action d'un groupe fini préservant le volume est une variété singulière. La correspondance de McKay relie la géométrie des résolutions crépantes du quotient et la géométrie de l'action sur la variété lisse. Sous certaines hypothèses, le schéma de Hilbert équivariant de la variété lisse est une résolution crépante. Nous interprétons ce schéma en terme de grassmannienne d'algèbres équivariante, afin d'en déduire une description explicite. D'après la conjecture de Ruan, modulo une déformation quantique, l'anneau de cohomologie d'une résolution crépante est isomorphe à l'anneau de cohomologie orbifold du quotient. Pour le quotient d'une variété de dimension trois locale (espace vectoriel avec action linéaire) ou compacte, nous calculons l'anneau de cohomologie des résolutions crépantes. Dans le cas local, un exemple montre la nécessité de la déformation quantique dans la conjecture. Dans le cas compact, l'analogie entre les deux anneaux conforte la conjecture.
|
2 |
Sur les correspondances de McKay pour le schéma de Hilbert de points sur le plan affineBoissière, Samuel 27 September 2004 (has links) (PDF)
Le quotient d'un espace vectoriel de dimension finie par l'action d'un sous-groupe fini d'automorphismes est une variété en général singulière. Sous bonnes hypothèses, la correspondance de McKay relie la géométrie de bonnes résolutions des singularités aux représentations du groupe. Pour le schéma de Hilbert de points sur le plan affine, nous étudions comment les différentes correspondances (McKay, McKay duale et McKay multiplicative) sont reliées les unes aux autres. A cette fin, nous calculons des formules combinatoires pour les fibrés vectoriels usuels sur le schéma de Hilbert de points sur le plan affine. Parallèlement à ces questions, nous étudions le comportement multiplicatif du théorème de Bridgeland, King \& Reid construisant la correspondance de McKay pour le schéma de Hilbert de points sur le plan affine. Dans une dernière partie, nous calculons les classes de Chern du fibré tangent au schéma de Hilbert de points sur le plan affine.
|
3 |
Correspondance de McKay : variations en dimension troisTÉROUANNE, Sophie 25 June 2004 (has links) (PDF)
Le thème central de cette thèse est la correspondance de McKay en dimension trois. Soit $X$ un schéma projectif lisse sur un corps $k$ et $G$ un groupe réductif fini. Dans un premier temps, on s'intéresse au schéma de Hilbert $G$-équivariant de $X$. On le définit dans un cadre général et on construit le morphisme de Hilbert-Chow par une méthode de linéarisation du déterminant. On étudie alors le cas particulier où le quotient $X/G$ est lisse. Dans un deuxième temps, on étudie une famille de singularités de dimension trois qui admettent deux résolutions crépantes naturelles : l'une est le schéma de Hilbert équivariant, et l'autre est le résultat d'un processus de désingularisation de singularités de points doubles. On calcule les fibres de ces deux résolutions et on conclut que le schéma de Hilbert donne une résolution plus naturelle au sens de McKay. On donne alors une interprétation de ce schéma en tant qu'espace modulaire d'une famille de fibrés vectoriels. Enfin, on s'intéresse à la catégorie dérivée équivariante. On donne une version $G$-équivariante du théorème de Be\u(\i)linson, puis on compare la catégorie dérivée $G$-équivariante de $X$ et la catégorie dérivée du quotient $X/G$ en déterminant l'image du foncteur $(\bf L)\pi^* : (\cal D)(X/G)\rightarrow (\cal D)^G(X)$.
|
4 |
Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et DéformationsButin, F. 13 November 2009 (has links) (PDF)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles.
|
5 |
Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations / Poisson Structures on Polynomial Algebras, Cohomology and DeformationsButin, Frédéric 13 November 2009 (has links)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles / Deformation quantization and McKay correspondence form the main themes of the study which deals with singular algebraic varieties, quotients of polynomial algebras, and polynomial algebras invariant under the action of a finite group. Our main tools are Poisson and Hochschild cohomologies and representation theory. Certain calculations are made with Maple and GAP. We calculate Hochschild homology and cohomology spaces of Klein surfaces by developing a generalization of HKR theorem in the case of non-smooth varieties and use the multivariate division and the Groebner bases. The closure of the minimal nilpotent orbit of a simple Lie algebra is a singular algebraic variety : on this one we construct invariant star-products, with the help of the BGS decomposition of Hochschild homology and cohomology, and of results on the invariants of the classical groups. We give the generators of the Joseph ideal associated to this orbit and calculate the infinitesimal characters. For simple Lie algebras of type B, C, D, we establish general results on the Poisson homology space in degree 0 of the invariant algebra, which support Alev's conjecture, then we are interested in the ranks 2 and 3. We compute Poincaré series of 2 variables for the finite subgroups of the special linear group in dimension 3, show that they are rational fractions, and associate to the subgroups a generalized Cartan matrix in order to obtain a McKay correspondence in dimension 3. All the study comes from 4 papers
|
Page generated in 0.0847 seconds