• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extrusion von physikalisch geschäumten Kautschukprofilen /

Westermann, Kira. January 2009 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2009.
2

Simulation und Optimierung des Wärmedämmvermögens von PUR-Hartschaum Wärme- und Stofftransport sowie mechanische Verformung /

Wagner, Kai-Erhard. January 2002 (has links)
Stuttgart, Univ., Diss., 2002.
3

Hochverzweigte Polyesterole und deren Abmischungen für den Einsatz in Polyurethan-Schaumstoffen

Ziemer, Antje 03 June 2003 (has links) (PDF)
Auf Grundlage der beiden Monomere (2,2-Bis(hydroxymethyl)propansäure (1) und 4,4-Bis(4-hydroxyphenyl)valeriansäure (2)) wurden hochverzweigte Polyester synthetisiert. Durch Verwendung von zwei-, drei-, vier- und sechsfunktionalen Kernmolekülen konnte die strukturelle Vielfalt der hochverzweigten Polyester erhöht werden. Abmischungen auf der Grundlage zweier Polyole (Polyether- bzw. Esterdiol) mit verschiedenen hochverzweigten Polyestern wurden hinsichtlich ihrer Mischbarkeit mittels DSC- und DMA-Messungen sowie rheologisch, mittels temperaturabhängiger IR-Spektroskopie, hinsichtlich ihrer Oberflächenspannung und mittels temperaturabhängiger AFM-Messungen bzw. SAXS-Messungen charakterisiert. DSC und DMA-Messungen des Glasübergangszustandes der Abmischungen gaben Hinweise, dass hochverzweigte Polyester unterschiedlicher Strukturen mit den Polyolen auf molekularer Ebene mischbar sind. Die hochverzweigten Polyester P1 und P1-PEG400 verbesserten die Verarbeitungseigenschaften eines geschlossenzelligen PU-Hartschaumstoffes. Durch die Hochfunktionalität der hochverzweigten Polyester erfolgte das Aushärten des Schaumstoffes schneller, wobei überraschenderweise das "Fließen" des Schaumstoffes gleichzeitig verbessert werden konnte. Durch den Zusatz der genannten hochverzweigten Polyester zu dem Polyetherpolyol konnte die Viskosität gesenkt werden, was die Fließeigenschaften des Schaumstoffes verbessert. Die Schaumstoffe zeigen weiterhin verbesserte mechanische Eigenschaften.
4

Hochverzweigte Polyesterole und deren Abmischungen für den Einsatz in Polyurethan-Schaumstoffen

Ziemer, Antje 04 June 2003 (has links)
Auf Grundlage der beiden Monomere (2,2-Bis(hydroxymethyl)propansäure (1) und 4,4-Bis(4-hydroxyphenyl)valeriansäure (2)) wurden hochverzweigte Polyester synthetisiert. Durch Verwendung von zwei-, drei-, vier- und sechsfunktionalen Kernmolekülen konnte die strukturelle Vielfalt der hochverzweigten Polyester erhöht werden. Abmischungen auf der Grundlage zweier Polyole (Polyether- bzw. Esterdiol) mit verschiedenen hochverzweigten Polyestern wurden hinsichtlich ihrer Mischbarkeit mittels DSC- und DMA-Messungen sowie rheologisch, mittels temperaturabhängiger IR-Spektroskopie, hinsichtlich ihrer Oberflächenspannung und mittels temperaturabhängiger AFM-Messungen bzw. SAXS-Messungen charakterisiert. DSC und DMA-Messungen des Glasübergangszustandes der Abmischungen gaben Hinweise, dass hochverzweigte Polyester unterschiedlicher Strukturen mit den Polyolen auf molekularer Ebene mischbar sind. Die hochverzweigten Polyester P1 und P1-PEG400 verbesserten die Verarbeitungseigenschaften eines geschlossenzelligen PU-Hartschaumstoffes. Durch die Hochfunktionalität der hochverzweigten Polyester erfolgte das Aushärten des Schaumstoffes schneller, wobei überraschenderweise das "Fließen" des Schaumstoffes gleichzeitig verbessert werden konnte. Durch den Zusatz der genannten hochverzweigten Polyester zu dem Polyetherpolyol konnte die Viskosität gesenkt werden, was die Fließeigenschaften des Schaumstoffes verbessert. Die Schaumstoffe zeigen weiterhin verbesserte mechanische Eigenschaften.
5

Numerische Untersuchungen der Bruchfestigkeit und inelastischen Deformationen von offenzelligen keramischen Schaumstrukturen

Settgast, Christoph 13 September 2019 (has links)
Die im Rahmen des Sonderforschungsbereiches SFB 920 entstandene Arbeit beschäftigt sich mit bruchmechanischen Vorgängen und der makroskopischen Beschreibung von offenzelligen Keramikschäumen unter Berücksichtigung des Materialverhaltens des Kompaktmaterials mithilfe von numerischen Simulationen. Dabei steht die thermomechanische Belastung einer solchen Struktur während eines Gießprozesses im Vordergrund. Im Rahmen der bruchmechanischen Untersuchungen konnte der Einfluss von verschiedenen Strukturparametern aufgezeigt werden. Die Belastungen entlang der scharfen Kerben im Inneren der Stege ergaben sich dabei als weniger kritisch als entlang der Stegaußenseiten. Das Kriechverhalten des kohlenstoffgebundenen Aluminiumoxides bei Hochtemperatur konnte erfolgreich beschrieben und für Schaumstrukturen angewendet werden. Das vorgeschlagene Modell kann dabei sowohl für virtuell erzeugte Schaumstrukturen als auch für reale Schaumproben angepasst werden. Mithilfe von homogenisierten Materialmodellen basierend auf neuronalen Netzen ergab sich eine drastische Reduzierung der Rechenzeit für komplexe Filterstrukturen. Es ist dabei eine Berücksichtigung von Plastizität und Schädigung für das Kompaktmaterial möglich. / This thesis developed within the collaborative research centre SFB 920 deals with fracture mechanical analyses and the macroscopic description of open-cell ceramic foams considering the material behaviour of the bulk material by means of numerical simulations. In the centre of interest is the thermomechanical loading of such a structure during a casting process. Within the framework of fracture mechanical investigations, the influence of various structural parameters is demonstrated. The loads along the sharp notches inside the struts turned out to be less critical than along the outer surfaces of the struts. The creep behaviour of the carbon-bonded alumina at high temperature were successfully described and the mathematical description is applied to foam structures. The proposed model can be adapted for virtually generated foam structures as well as for real foam samples. Using homogenized material models based on neuronal networks, a drastic reduction of the computing time for complex filter structures was achieved. Meanwhile, it is possible to consider plasticity and damage effects for the bulk material.
6

Multiskalen-Ansatz zur Vorhersage der anisotropen mechanischen Eigenschaften von Metall-Schaumstoff-Verbundelementen

Gahlen, Patrick 21 September 2023 (has links)
Metall-Schaumstoff-Verbundelemente werden aufgrund ihrer sehr guten Flammschutzwirkung, selbsttragenden Eigenschaften bei geringem Gewicht und der kostengünstigen Montagemöglichkeit zunehmend in der Baubranche zur effizienten Wärmedämmung eingesetzt. Die Verbundelemente bestehen aus zwei flächigen, linierten oder profilierten, außen liegenden metallischen Deckschichten geringer Dicke, in denen der Zwischenraum (Kernschicht) mit einer wärmedämmenden Hartschaumschicht aus z. B. Polyisocyanurat ausgefüllt ist. Bedingt durch den (kontinuierlichen) Fertigungsprozess entstehen im Schaumkern material- und strukturbedingte Inhomogenitäten, wodurch dessen Materialeigenschaften über der Schaumdicke variieren. Diese Inhomogenitäten können die mechanischen Eigenschaften der Verbundelemente negativ beeinflussen und zu einem frühzeitigen Versagen führen. Aus diesem Grund ist das Verständnis bzw. die Berücksichtigung der lokalen Effekte im Schaum sowohl für die Auslegung der Verbundelemente als auch zur Schöpfung möglicher Potenziale zur Verbesserung der Produktqualität essenziell. Da die Betrachtung der lokalen Einflussfaktoren experimentell und analytisch nur begrenzt isoliert möglich ist, wird in dieser Arbeit ein numerischer Multiskalen-Ansatz unter Verwendung der Finite-Elemente-Methode vorgestellt, welcher in der Lage ist, die mechanischen Eigenschaften der lokalen mesoskaligen Schaumstrukturen mittels Homogenisierung in einem makroskaligen Simulationsmodell eines kompletten Verbundelementes zu berücksichtigen. Für die Validierung und Bewertung des Modells werden kommerziell erhältliche Verbundelemente verwendet. Im ersten Schritt werden die lokalen (höhenaufgelösten) Schaumeigenschaften dieser Verbundelemente experimentell charakterisiert. Besonderes Augenmerk liegt auf der Analyse des Schaumbasismaterials und der Zellstruktur. Basierend auf den experimentellen Daten wird ein mesoskaliges Simulationsmodell eines Repräsentativen Volumenelements erstellt und validiert, welches eine Vorhersage der mechanischen Eigenschaften anisotroper Schaumstrukturen mit unterschiedlichen Aspektverhältnissen und Orientierungen der individuellen Zellen auf Basis definierter Ellipsoidpackungen und einer anisotropen Mosaik-Methode ermöglicht. Neben der Vorhersage der lokalen Schaumeigenschaften bietet das mesoskalige Modell die Möglichkeit, Auswirkungen einzelner Einflussfaktoren auf die Schaumeigenschaften isoliert zu betrachten. Ein Vergleich zwischen experimentellen und numerischen Ergebnissen aus einem zuvor definierten Bereich zeigt, dass sowohl im Experiment, als auch in der mesoskaligen Simulation die Strukturen ein stark anisotropes Verhalten aufweisen, wobei der Grad der Anisotropie in der Simulation tendenziell leicht unterschätzt wird. Trotz kleiner Abweichungen stimmen die Simulationsergebnisse gut mit den experimentellen Daten überein. Demnach ist das mesoskalige Simulationsmodell geeignet, um die lokalen, anisotropen mechanischen Schaumeigenschaften nachzubilden. Darauf aufbauend werden die lokalen Materialeigenschaften eines ausgewählten Verbundelementes numerisch bestimmt und auf das makroskopische Modell übertragen. Im Zuge dessen werden sowohl geeignete Methoden zur Implementierung der Schaumeigenschaften vorgestellt, als auch eine Sensitivitätsanalyse zum Einfluss der Auflösung der lokalen mesoskaligen Schaumstruktur auf die makroskopischen Eigenschaften der Verbundelemente durchgeführt. Die Qualität des makroskopischen Simulationsmodells wird über den Vergleich der simulativen Ergebnisse mit bauteil-typischen Messungen analysiert. Vergleichbar zur mesoskaligen Validierung können die makroskaligen Bauteileigenschaften mit kleineren Abweichungen gut wiedergegeben werden. Voraussetzung ist jedoch, dass die im Vergleich zur (nahezu) homogenen Schaum-Kernschicht äußeren, inhomogenen Randschichten separat modelliert werden. Diese Erkenntnisse lassen sich auch auf andere Verbundelemente mit unterschiedlichen Dicken übertragen, da aus den experimentellen Untersuchungen bekannt ist, dass die Verbundelemente qualitativ vergleichbare Eigenschaftsverteilungen aufweisen. Aufgrund des hohen Rechen- und Modellierungsaufwands wird abschließend bewertet, inwiefern die komplexen mesomechanischen Eigenschaften anisotroper Schaumstrukturen in zukünftigen Multiskalen-Simulationen effizienter berücksichtigt werden können. Hierzu wird ein Künstliches Neuronales Netz verwendet, wobei der Fokus aufgrund der benötigten Dauer zur Erstellung einer geeigneten Datenbasis auf der Vorhersage des orthotropen Steifigkeitstensors liegt. Die Ergebnisse zeigen, dass bei einer geeigneten Netzwerkstruktur und einer ausreichenden Datenbasis die mechanischen Eigenschaften komplexer Zellstrukturen mittels eines Neuronalen Netzes innerhalb von Sekunden sehr gut reproduziert werden können. In einer abschließenden Studie wird der Einfluss der Datenbankgröße auf die Vorhersagegenauigkeit untersucht. Es kann festgestellt werden, dass mindestens 500 Trainingsdatenpunkte erforderlich sind, um eine ausreichende Genauigkeit zu erreichen. / Metal-foam composite elements are used increasingly for efficient thermal insulation in the construction industry due to their very good flame-retardancy, self-supporting properties combined with low weight, and low-cost assembly options. The composite elements consist of two thin, flat, lined, or profiled external metallic cover layers, in which the interspace (core layer) is filled with a thermally insulating low-density layer of rigid foam, e.g. polyisocyanurate. Due to the (continuous) manufacturing process, material- and structure-related inhomogeneities occur in the foam core, causing its material properties to vary over the core thickness. These inhomogeneities can negatively affect the mechanical properties of the composite elements and lead to premature failure. For this reason, understanding and considering the local effects is essential both for the design of the composite elements and for creating possible potentials to improve the product quality. Since the consideration of local influencing factors is limited experimentally and analytically in isolation, this work presents a numerical multiscale approach using the finite element method, which can consider the mechanical properties of the local mesoscale foam structures using homogenization in a macroscale simulation model of a complete composite element. For the validation and evaluation of the model, commercially available composite elements are used. In a first step, the local (height-resolved) foam properties of these composite elements are characterized experimentally. Particular attention is paid to the analysis of foam base material, foam density, and cell structure. Based on the experimental data, a mesoscale simulation model of a representative volume element is created and validated, which allows a prediction of mechanical properties of anisotropic foam structures with different aspect ratios and orientations of the individual cells based on defined ellipsoid packings and an anisotropic tessellation method. In addition to predicting local foam properties, this mesoscale model offers the possibility to consider effects of individual influencing factors on foam performance in isolation. A comparison between experimental and numerical results from a previously defined area shows that in both the experiment and the mesoscale simulation, the structures exhibit strongly anisotropic behavior, although the degree of anisotropy tends to be slightly underestimated in the simulation. Despite small deviations, simulation results agree well with experimental data. Accordingly, this mesoscale simulation model is suitable to reproduce local anisotropic mechanical foam properties. Based on this, local material properties of a selected composite element are determined numerically and transferred to the macroscopic model. In the course of this, suitable methods for implementing foam properties are presented as well as a sensitivity analysis on the influence of resolution of the local mesoscale foam structure on macroscopic properties of composite elements. The quality of the macroscopic simulation model is again analyzed via a comparison of simulative results with component-typical measurements. Comparable to the mesoscale validation, macroscale component properties can be reproduced well with minor deviations. A prerequisite, however, is that outer, inhomogeneous layers are modeled separately compared to (nearly) homogeneous foam core layer. These findings can also be applied to other composite elements with different thicknesses since it is known from experimental investigations that composite elements exhibit qualitatively comparable property distributions. Finally, due to the high computational and modeling effort, it is evaluated to what extent the complex mesomechanical properties of anisotropic foam structures can be considered more efficiently in future multiscale simulations. For this purpose, an Artificial Neural Network is used, focusing on the prediction of orthotropic stiffness tensor due to the required duration to generate a suitable database. Results from this study show that with a suitable network structure and a sufficient database, the mechanical properties of complex foam structures can be reproduced very well via the Artificial Neural Network within seconds. In a final study, the effect of the database size on the prediction accuracy was examined. It could be observed that at least 500 training datapoints are required to obtain sufficient accuracy.

Page generated in 0.0372 seconds