Spelling suggestions: "subject:"schedule""
1 |
Ανάπτυξη χρονοπρογραμματιστή με τυχαίες επιλογέςΤόλλος, Αθανάσιος 10 March 2014 (has links)
Ο σύγχρονος κόσμος των δικτύων και του internet απαιτεί πολύ υψηλές ταχύτητες διασυνδέσεων στα διάφορα δίκτυα. Ξεκινώντας ακόμα και από τα οικιακά δίκτυα και τα τοπικά δίκτυα (LAN), στα πανεπιστημιακά δίκτυα (campus networks), στα μητροπολιτικά δίκτυα (MAN), στα δίκτυα ευρύτερης περιοχής (WAN) και στα δίκτυα κορμού του internet (core networks). Σε όλα αυτά τα δίκτυα χρησιμοποιούνται κατά κόρον μεταγωγείς (switches) και δρομολογητές (routers) προκειμένου να μεταφέρουν την δικτυακή πληροφορία από την αφετηρία της στον προορισμό της διασχίζοντας πληθώρα άλλων δικτύων.
Πυρήνα των μεταγωγέων και των δρομολογητών αποτελεί ο χρονοπρογραμματιστής, ένας αλγόριθμος δηλαδή υλοποιημένος στο hardware της εκάστοτε συσκευής, που αποφασίζει την προώθηση της πληροφορίας από την είσοδό της στην έξοδό της, αφού προηγουμένως έχει καθοριστεί με άλλο μηχανισμό η θύρα εξόδου της πληροφορίας. Η σημασία του χρονοπρογραμματιστή γίνεται φανερή από την πληθώρα προβλημάτων που πρέπει να επιλύσει. Επιλεκτικά, κάποια από τα προβλήματα είναι ο ανταγωνισμός εισόδων για την ίδια έξοδο, το ταίριασμα εισόδων – εξόδων, η ελάχιστη δυνατόν καθυστέρηση στην διερχόμενη πληροφορία, η σταθερότητα λειτουργίας, η μεγιστοποίηση της διαμεταγωγής (throughput), η δικαιοσύνη στην εξυπηρέτηση εισόδων και εξόδων, κ.α.
Στην παρούσα διπλωματική παρουσιάζεται η οικογένεια αλγορίθμων χρονοπρογραμματισμού ROLM (Randomized On-Line Matching), η οποία υλοποιεί τυχαιότητα με αποδοτικό και αποτελεσματικό τρόπο. Οι επιδόσεις αυτές φαίνονται στη μικρή καθυστέρηση στην προώθηση πακέτων (packet forwarding), επιτυγχάνοντας έτσι υψηλή διαμεταγωγή (throughput) και στα χαρακτηριστικά δικαιοσύνης που προσφέρουν, σε σχέση με τις υπάρχουσες ανταγωνιστικές υλοποιήσεις, που δεν χρησιμοποιούν τυχαιότητα αλλά ντετερμινιστικές μεθόδους απόφασης. Τα αποτελέσματα αυτά οφείλονται στο βασικό αλγόριθμο της οικογένειας ROLM, τον Ranking, o οποίος υπολογίζει μέγιστο ταίριασμα εισόδων – εξόδων. Οι αλγόριθμοι αυτοί επιλέγουν τυχαία εισόδους για προώθηση στις εξόδους που ζητούν, επιλογή η οποία μπορεί να οδηγήσει σε χρονοπρογραμματιστές υψηλών ταχυτήτων, ταχύτητες που ορίζει η εκάστοτε τεχνολογία υλοποίησης και η ταχύτητα των συνδέσμων δικτύου.
Ο αλγόριθμος Ranking υλοποιείται σε software και σε hardware (υλικό), στην πλατφόρμα FPSLIC της ATMEL. Η πλατφόρμα αυτή περιέχει έναν 8μπιτο επεξεργαστή, τον AVR, και ένα προγραμματιζόμενο πίνακα πυλών (FPGA) στην ίδια πλακέτα κατασκευασμένα με την ίδια τεχνολογία. Έτσι, οι μετρήσεις των δύο υλοποιήσεων είναι συγκρίσιμες.
Το πρόγραμμα που αναπτύσσεται, τόσο για την software όσο και για την hardware υλοποίηση, δέχεται ως παράμετρο το μέγεθος του μεταγωγέα. Έτσι, μετρώνται και συγκρίνονται χαρακτηριστικά όπως η ταχύτητα, ο χρόνος απόφασης, η επιφάνεια και το πλήθος θυρών I/O, για μεταγωγείς μεγέθους τεσσάρων εισόδων και τεσσάρων εξόδων (4x4), 8x8, 16x16 και 32x32. / --
|
2 |
Simulation and Performance Evaluation of Hadoop Capacity Scheduler2013 June 1900 (has links)
MapReduce is a parallel programming paradigm used for processing huge datasets on certain classes of
distributable problems using a cluster. Budgetary constraints and the need for better usage of resources in a
MapReduce cluster often make organizations rent or share hardware resources for their main data processing
and analysis tasks. Thus, there may be many competing jobs from different clients performing simultaneous
requests to the MapReduce framework on a particular cluster. Schedulers like Fair Share and Capacity have
been specially designed for such purposes. Administrators and users run into performance problems, however,
because they do not know the exact meaning of different task scheduler settings and what impact they can
have with respect to the resource allocation scheme across organizations for a shared MapReduce cluster. In
this work, Capacity Scheduler is integrated into an existing MRPERF simulator to predict the performance
of MapReduce jobs in a shared cluster under different settings for Capacity Scheduler.
A few case studies on the behaviour of Capacity Scheduler across different job patterns etc. using integrated simulator are also conducted.
|
3 |
Rate Scheduling for HSDPA in UMTSHameed, Farhan January 2008 (has links)
The introduction of a new technology High Speed Downlink Packet Access (HSDPA) in the Release 5 of the 3GPP specifications raises the question about its performance capabilities. HSDPA is a promising technology which gives theoretical rates up to 14.4 Mbits. The main objective of this thesis is to discuss the system level performance of HSDPAMainly the thesis exploration focuses on the Packet Scheduler because it is the central entity of the HSDPA design. Due to its function, the Packet Scheduler has a direct impact on the HSDPA system performance. Similarly, it also determines the end user performance, and more specifically the relative performance between the users in the cell.The thesis analyzes several Packet Scheduling algorithms that can optimize the trade-off between system capacity and end user performance for the traffic classes targeted in this thesis.The performance evaluation of the algorithms in the HSDPA system are carried out under computer aided simulations that are assessed under realistic conditions to predict the results as precise on the algorithms efficiency. The simulation of the HSDPA system and the algorithms are coded in C/C++ language
|
4 |
Bandwidth Prediction and Queue Management in ITSGuo, Jia-Liang 22 July 2010 (has links)
none
|
5 |
Implementation and Evaluation of Proportional Share Scheduler on Linux Kernel 2.6Srinivasan, Pradeep Kumar 25 April 2008 (has links)
No description available.
|
6 |
The management of multiple submissions in parallel systems: the fair scheduling approach / La gestion de plusieurs soumissions dans les systèmes parallèles: l\'approche d\'ordonnancement équitableVinicius Gama Pinheiro 14 February 2014 (has links)
La communauté de Calcul Haute Performance est constamment confrontée à de nouveaux défis en raison de la demande toujours croissante de la puissance de traitement provenant dapplications scientifiques diverses. Les systèmes parallèles et distribués sont la clé pour accélérer lexécution de ces applications, et atteindre les défis associés car de nombreux processus peuvent être exécutés simultanément. Ces systèmes sont partagés par de nombreux utilisateurs qui soumettent des tâches sur de longues périodes au fil du temps et qui attendent un traitement équitable par lordonnanceur. Le travail effectué dans cette thèse se situe dans ce contexte: analyser et développer des algorithmes équitables et efficaces pour la gestion des ressources informatiques partagés entre plusieurs utilisateurs. Nous analysons les scénarios avec de nombreux soumissions issues de plusieurs utilisateurs. Ces soumissions contiennent un ou plusieurs processus et lensemble des soumissions sont organisées dans des campagnes successives. Dans ce que nous appelons le modèle dordonnancement des campagnes les processus dune campagne ne commencent pas avant que tous les processus de la campagne précédente soient terminés. Chaque utilisateur est intéressé à minimiser la somme des temps dexécution de ses campagnes. Cela est motivé par le comportement de lutilisateur tandis que lexécution dune campagne peut être réglé par les résultats de la campagne précédente. Dans la première partie de ce travail, nous définissons un modèle théorique pour lordonnancement des campagnes sous des hypothèses restrictives et nous montrons que, dans le cas général, il est NP-difficile. Pour le cas mono-utilisateur, nous montrons que lalgorithme dapproximation pour le problème (classique) dordonnancement de processus parallèles fournit également le même rapport dapproximation pour lordonnancement des campagnes. Pour le cas général avec plusieurs utilisateurs, nous établissons un critère déquité inspiré par une situation idéalisée de partage des ressources. Ensuite, nous proposons un algorithme dordonnancement appelé FairCamp qui impose des dates limite pour les campagnes pour assurer léquité entre les utilisateurs entre les campagnes successives. La deuxième partie de ce travail explore un modèle dordonnancement de campagnes plus relâché et réaliste, avec des caractéristiques dynamiques. Pour gérer ce cadre, nous proposons un nouveau algorithme appelé OStrich dont le principe est de maintenir un ordonnancement partagé virtuel dans lequel le même nombre de processeurs est assigné à chaque utilisateur. Les temps dachèvement dans lordonnancement virtuel déterminent lordre dexécution sur le processeurs physiques. Ensuite, les campagnes sont entrelacées de manière équitable. Pour des travaux indépendants séquentiels, nous montrons que OStrich garantit le stretch dune campagne en étant proportionnel à la taille de la campagne et le nombre total dutilisateurs. Le stretch est utilisé pour mesurer le ralentissement par rapport au temps quil prendrait dans un système dédié. Enfin, la troisième partie de ce travail étend les capacités dOStrich pour gérer des tâches parallèles rigides. Cette nouvelle version exécute les campagnes utilisant une approche gourmande et se sert aussi dun mécanisme de redimensionnement basé sur les événements pour mettre à jour lordonnancement virtuel selon le ratio dutilisation du système. / The High Performance Computing community is constantly facing new challenges due to the ever growing demand for processing power from scientific applications that represent diverse areas of human knowledge. Parallel and distributed systems are the key to speed up the execution of these applications as many jobs can be executed concurrently. These systems are shared by many users who submit their jobs over time and expect a fair treatment by the scheduler. The work done in this thesis lies in this context: to analyze and develop fair and efficient algorithms for managing computing resources shared among multiple users. We analyze scenarios with many submissions issued from multiple users over time. These submissions contain several jobs and the set of submissions are organized in successive campaigns. In what we define as the Campaign Scheduling model, the jobs of a campaign do not start until all the jobs from the previous campaign are completed. Each user is interested in minimizing the flow times of their own campaigns. This is motivated by the user submission behavior whereas the execution of a new campaign can be tuned by the results of the previous campaign. In the first part of this work, we define a theoretical model for Campaign Scheduling under restrictive assumptions and we show that, in the general case, it is NP-hard. For the single-user case, we show that an approximation scheduling algorithm for the (classic) parallel job scheduling problem also delivers the same approximation ratio for the Campaign Scheduling problem. For the general case with multiple users, we establish a fairness criteria inspired by time sharing. Then, we propose a scheduling algorithm called FairCamp which uses campaign deadlines to achieve fairness among users between consecutive campaigns. The second part of this work explores a more relaxed and realistic Campaign Scheduling model, provided with dynamic features. To handle this setting, we propose a new algorithm called OStrich whose principle is to maintain a virtual time-sharing schedule in which the same amount of processors is assigned to each user. The completion times in the virtual schedule determine the execution order on the physical processors. Then, the campaigns are interleaved in a fair way. For independent sequential jobs, we show that OStrich guarantees the stretch of a campaign to be proportional to campaigns size and to the total number of users. The stretch is used for measuring by what factor a workload is slowed down relatively to the time it takes to be executed on an unloaded system. Finally, the third part of this work extends the capabilities of OStrich to handle parallel jobs. This new version executes campaigns using a greedy approach and uses an event-based resizing mechanism to shape the virtual time-sharing schedule according to the system utilization ratio.
|
7 |
Optimal Allocation of Satellite Network ResourcesBurrowbridge, Sarah Elizabeth 31 December 1999 (has links)
This work examines a straightforward solution to a problem of satellite network resource allocation by exploring the application of an optimal algorithm to a subset of the general scheduling problem. Making some basic simplifications, such as the limitation of the mission scenarios to Low Earth Orbiting satellites, allows the effective application of the rigorous methods of the Greedy Activity-Selector algorithm. Tools such as Analytical Graphic's Satellite Tool Kit and MATLAB 5.0 are integrated to assist in the implementation of the algorithm. Several examples are presented in order to illustrate the effectiveness of the process. / Master of Science
|
8 |
General schedulability bound analysis and its applications in real-time systemsWu, Jianjia 17 September 2007 (has links)
Real-time system refers to the computing, communication, and information system with deadline requirements. To meet these deadline requirements, most systems use a mechanism known as the schedulability test which determines whether each of the admitted tasks can meet its deadline. A new task will not be admitted unless it passes the schedulability test. Schedulability tests can be either direct or indirect. The utilization based schedulability test is the most common schedulability test approach, in which a task can be admitted only if the total system utilization is lower than a pre-derived bound. While the utilization bound based schedulability test is simple and effective, it is often difficult to derive the bound. For its analytical complexity, utilization bound results are usually obtained on a case-by-case basis. In this dissertation, we develop a general framework that allows effective derivation of schedulability bounds for different workload patterns and schedulers. We introduce an analytical model that is capable of describing a wide range of tasks' and schedulers'ÃÂÃÂ behaviors. We propose a new definition of utilization, called workload rate. While similar to utilization, workload rate enables flexible representation of different scheduling and workload scenarios and leads to uniform proof of schedulability bounds. We introduce two types of workload constraint functions, s-shaped and r-shaped, for flexible and accurate characterization of the task workloads. We derive parameterized schedulability bounds for arbitrary static priority schedulers, weighted round robin schedulers, and timed token ring schedulers. Existing utilization bounds for these schedulers are obtained from the closed-form formula by direct assignment of proper parameters. Some of these results are applied to a cluster computing environment. The results developed in this dissertation will help future schedulability bound analysis by supplying a unified modeling framework and will ease the implementation practical real-time systems by providing a set of ready to use bound results.
|
9 |
General schedulability bound analysis and its applications in real-time systemsWu, Jianjia 17 September 2007 (has links)
Real-time system refers to the computing, communication, and information system with deadline requirements. To meet these deadline requirements, most systems use a mechanism known as the schedulability test which determines whether each of the admitted tasks can meet its deadline. A new task will not be admitted unless it passes the schedulability test. Schedulability tests can be either direct or indirect. The utilization based schedulability test is the most common schedulability test approach, in which a task can be admitted only if the total system utilization is lower than a pre-derived bound. While the utilization bound based schedulability test is simple and effective, it is often difficult to derive the bound. For its analytical complexity, utilization bound results are usually obtained on a case-by-case basis. In this dissertation, we develop a general framework that allows effective derivation of schedulability bounds for different workload patterns and schedulers. We introduce an analytical model that is capable of describing a wide range of tasks' and schedulers'ÃÂÃÂ behaviors. We propose a new definition of utilization, called workload rate. While similar to utilization, workload rate enables flexible representation of different scheduling and workload scenarios and leads to uniform proof of schedulability bounds. We introduce two types of workload constraint functions, s-shaped and r-shaped, for flexible and accurate characterization of the task workloads. We derive parameterized schedulability bounds for arbitrary static priority schedulers, weighted round robin schedulers, and timed token ring schedulers. Existing utilization bounds for these schedulers are obtained from the closed-form formula by direct assignment of proper parameters. Some of these results are applied to a cluster computing environment. The results developed in this dissertation will help future schedulability bound analysis by supplying a unified modeling framework and will ease the implementation practical real-time systems by providing a set of ready to use bound results.
|
10 |
Sched-ITS: An Interactive Tutoring System to Teach CPU Scheduling Concepts in an Operating Systems CourseKoya, Bharath Kumar 31 May 2017 (has links)
No description available.
|
Page generated in 0.0388 seconds