• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coeur de l'invariant de Casson et cobordismes d'homologie

Dequidt Picot, Kristell 04 May 2005 (has links) (PDF)
L'invariant de Casson est un invariant classique des 3-sphères d'homologie entière. Via les scindements de Heegaard, S. Morita le décrit comme la somme de deux homomorphismes d et q définis sur un sous-groupe K_(g,1) du groupe de difféotopies M_(g,1) d'une surface S_(g,1) orientée de genre g à une composante de bord. L'homomorphisme d constitue le "Coeur de l'invariant de Casson" et est décrit géométriquement en termes de SU-parallélisations de Morita des mapping tores. A l'origine, d provient d'une application d_X définie sur M_(g,1) comme la différence entre le cocycle de Meyer et un cocycle d'intersection dépendant d'un champ de vecteurs X sur la surface S_(g,1). Tout d'abord, nous revisiterons les résultats de Morita et rendrons l'application d_X calculatoire. Puis nous considèrerons les cobordismes d'homologie et leur groupe associé H_(g,1) : via les mapping cylindres, M_(g,1) constitue un sous-groupe de H_(g,1). Dans la perspective de prolonger d, nous étendrons les cocycles d'intersection et cocycle de Meyer aux cobordismes d'homologie munis de structure d'Euler.

Page generated in 0.0947 seconds