• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Méthode d'indexation qualitative : application à un plan de veille relatif aux thérapies émergentes contre la maladie d'Alzheimer / Qualitative indexing process : applied to build a search strategy plan about stand out topics on Alzheimer's disease therapy

Vaugeois-Sellier, Nathalie 03 December 2009 (has links)
Dans le contexte de recherche et développement d’un nouveau traitement thérapeutique, le chercheur veut surveiller ses thématiques de recherche pour actualiser ses connaissances. Il a besoin d’accéder à l’information qui lui est utile directement sur son ordinateur. La prise en compte de la complexité d’un système biologique, révèle la très grande difficulté à traduire de façon linguistique toute une réflexion hypothétique. Nous proposons dans ce travail, un procédé détaché du système de langue. Pour ce faire, nous présentons une méthodologie basée sur une indexation qualitative en utilisant un filtrage personnalisé. L’index n’est plus d’ordre linguistique mais de type « liaisons de connaissances ». Cette méthode d’indexation qualitative appliquée à « l’information retrieval » contraste avec l’indexation documentaire et l’utilisation d’un thésaurus tel que le MeSH lorsqu’il s’agit d’exprimer une requête complexe. Le choix du sujet d’expérimentation sur la base de données Medline via PubMed constitue une démonstration de la complexité d’expression d’une problématique de recherche. Le thème principal est un traitement possible de la maladie d’Alzheimer. Cette expérience permet de mettre en avant des documents contenus dans Medline qui ne répondent pas ou peu à une indexation en mots-clés. Les résultats obtenus suggèrent qu’une « indexation en connaissances » améliore significativement la recherche d’information dans Medline par rapport à une simple recherche sur Google pratiquée habituellement par le chercheur. Assimilable à une veille scientifique, cette méthodologie ouvre une nouvelle collaboration entre professionnels de l’information et chercheurs / In the context of research and development for a new therapeutic treatment, the researcher seeks to monitor relevant research topics in order to update field-specific knowledge. Direct computer access to relevant information is required. The complexity of biological systems increases the great difficulty of translating some hypothetical reflections in a linguistic manner or by semiotics. In this study, we propose a detached process of the system of language. To do this, we will present a methodology based on a qualitative indexing using personalized filtering. The index is no longer of a linguistic nature but a sort of “connection of knowledge”. This method of qualitative indexing applied to information retrieval is in contrast with documentation indexing systems and the use of thesauruses such as MeSH when it pertains to formulating a complex request. The choice of the experimentation subject using Medline database via PubMed proves the complexity of research problem formulation. The main theme is a possible treatment of Alzheimer's disease. This experiment makes it possible to highlight the documents contained in Medline which provide few or no answers by indexing keywords. The results obtained suggest that an indexing knowledge significantly improves search results for information via Medline in comparison to “Google” searches habitually carried out by the researcher. Comparable to scientific awareness, this methodology opens new collaboration possibilities between information professionals and research
22

Robust and distributed top-n frequent-pattern mining with SAP BW accelerator

Lehner, Wolfgang, Legler, Thomas, Schaffner, Jan, Krüger, Jens 22 April 2022 (has links)
Mining for association rules and frequent patterns is a central activity in data mining. However, most existing algorithms are only moderately suitable for real-world scenarios. Most strategies use parameters like minimum support, for which it can be very difficult to define a suitable value for unknown datasets. Since most untrained users are unable or unwilling to set such technical parameters, we address the problem of replacing the minimum-support parameter with top-n strategies. In our paper, we start by extending a top-n implementation of the ECLAT algorithm to improve its performance by using heuristic search strategy optimizations. Also, real-world datasets are often distributed and modern database architectures are switching from expensive SMPs to cheaper shared-nothing blade servers. Thus, most mining queries require distribution handling. Since partitioning can be forced by user-defined semantics, it is often forbidden to transform the data. Therefore, we developed an adaptive top-n frequent-pattern mining algorithm that simplifies the mining process on real distributions by relaxing some requirements on the results. We first combine the PARTITION and the TPUT algorithms to handle distributed top-n frequent-pattern mining. Then, we extend this new algorithm for distributions with real-world data characteristics. For frequent-pattern mining algorithms, equal distributions are important conditions, and tiny partitions can cause performance bottlenecks. Hence, we implemented an approach called MAST that defines a minimum absolute-support threshold. MAST prunes patterns with low chances of reaching the global top-n result set and high computing costs. In total, our approach simplifies the process of frequent-pattern mining for real customer scenarios and data sets. This may make frequent-pattern mining accessible for very new user groups. Finally, we present results of our algorithms when run on the SAP NetWeaver BW Acceleratorwith standard and real business datasets.
23

Photovoltaic Maximum Power Point Tracking using Optimization Algorithms

Pervez, Imran 04 1900 (has links)
The necessity for clean and sustainable energy has shifted the energy sector’s interest in renewable energy sources. Photovoltaics (PV) is the most popular renewable energy source because the sun is ubiquitous. However, several discrepancies exist in a PV system when implemented for real-world applications. Among several other existing problems related to Photovoltaics, in this work, we deal with maximum power point tracking (MPPT) under Partial Shading (PS) conditions. MPPT is a mechanism formulated as an optimization problem adjusting the PV to deliver the maximum power to the load. Under full insolation conditions, varying solar panel temperatures, and different loads MPPT problem is a convex optimization problem. However, when the PV’s surface is partially shaded, multiple power peaks are created in the power versus voltage (P-V) curve making MPPT non-convex.
24

Användare av digitala kulturarvssamlingars informationssökningsbeteende på ett exempel på Biblioteks- och Informationsvetenskap studenter och DigitaltMuseum / Users of digital heritage collections' information search behavior on an example of Library and Information Science students and DigitaltMuseum

Ziolkowski, Pawel January 2021 (has links)
The purpose of this bachelor’s thesis is to examine information search behaviour of a group of Library and Information Science students in the cultural heritage digital collection cross search service DigitaltMuseum and an evaluation of the cross-search service search functionalities’ usability for the end-user. The study aims in understanding the user search behaviour to let the designers of cultural heritage digital collections websites improve the search tools so that the design matches the real needs of the users. After doing simulated search tasks the informants answered several questions about the chosen search strategies and preferable search functionalities. Quantitative analysis shows that simple search and free keywords are the most preferable search methods, however it is not clear why. On one hand it is observed that the users prefer google-like searching, on the other, discussion on the DigitaltMuseum search functionalities shows lack of use of Knowledge Organisation System of any kind which makes the advanced search tool insufficient.
25

Hybrid Evolutionary Metaheuristics for Multiobjective Decision Support / Métaheuristiques hybrides évolutionnaires pour l'aide à la décision multi-objectifs

Kafafy, Ahmed 24 October 2013 (has links)
La prise de décision est une partie intégrante de notre vie quotidienne où le décideur est confronté à des problèmes composés de plusieurs objectifs habituellement contradictoires. Dans ce travail, nous traitons des problèmes d'optimisation multiobjectif dans des espaces de recherche continus ou discrets. Nous avons développé plusieurs nouveaux algorithmes basés sur les métaheuristiques hybrides évolutionnaires, en particulier sur l'algorithme MOEA/D. Nous avons proposé l'algorithme HEMH qui utilise l'algorithme DM-GRASP pour construire une population initiale de solutions de bonne qualité dispersées le long de l'ensemble des solutions Pareto optimales. Les résultats expérimentaux montrent la supériorité de toutes les variantes hybrides proposées sur les algorithmes originaux MOEA/D et SPEA2. Malgré ces bons résultats, notre approche possède quelques limitations, levées dans une version améliorée de HEMH : HEMH2 et deux autres variantes HEMHde et HEMHpr. Le Adaptive Binary DE inclus dans les HEMH2 et HEMHde a de meilleures capacités d'exploration qui pallient aux capacités de recherche locale contenues dans la HEMH, HEMH2 et HEMHde. Motivés par ces résultats, nous avons proposé un nouvel algorithme baptisé HESSA pour explorer un espace continu de recherche où le processus de recherche est réalisé par différentes stratégies de recherche. Les résultats expérimentaux montrent la supériorité de HESSA à la fois sur MOEA/D et dMOPSO. Tous les algorithmes proposés ont été vérifiés, testé et comparés à certaines méthodes MOEAs. Les résultats expérimentaux montrent que toutes les propositions sont très compétitives et peuvent être considérés comme une alternative fiable / Many real-world decision making problems consist of several conflicting objectives, the solutions of which is called the Pareto-optimal set. Hybrid metaheuristics proved their efficiency in solving these problems. They tend to enhance search capabilities by incorporating different metaheuristics. Thus, we are concerned with developing new hybrid schemes by incorporating different strategies with exploiting the pros and avoiding the drawback of the original ones. First, HEMH is proposed in which the search process includes two phases DMGRASP obtains an initial set of efficient solutions in the 1st phase. Then, greedy randomized path-relinking with local search or reproduction operators explore the non-visited regions. The efficient solutions explored over the search are collected. Second, a comparative study is developed to study the hybridization of different metaheuristics with MOEA/D. The 1st proposal combines adaptive discrete differential Evolution with MOEA/D. The 2nd combines greedy path-relinking with MOEA/D. The 3rd and the 4th proposals combine both of them in MOEA/D. Third, an improved version of HEMH is presented. HEMH2 uses inverse greedy to build its initial population. Then, differential evolution and path-relink improves these solutions by investigating the non-visited regions in the search space. Also, Pareto adaptive epsilon concept controls the archiving process. Motivated by the obtained results, HESSA is proposed to solve continuous problems. It adopts a pool of search strategies, each of which has a specified success ratio. A new offspring is generated using a randomly selected one. Then, the success ratios are adapted according to the success of the generated offspring. The efficient solutions are collected to act as global guides. The proposed algorithms are verified against the state of the art MOEAs using a set of instances from literature. Results indicate that all proposals are competitive and represent viable alternatives

Page generated in 0.0716 seconds