351 |
Avaliação da reprodutibilidade intra e interobservador da segmentação manual de sarcomas ósseos em imagens de ressonância magnética / Evaluation of intra- and inter-observer manual segmentation reproducibility in magnetic images of bone sarcomasFernando Carrasco Ferreira Dionísio 29 May 2017 (has links)
Os sarcomas ósseos representam uma proporção significativa de tumores na faixa etária pediátrica, ainda apresentando um quadro desafiador devido a sua significativa taxa de morbimortalidade. Pesquisas para o desenvolvimento de novas modalidades terapêuticas e para o desenvolvimento de métodos que identifiquem características da doença que possam permitir melhor estratificação dos pacientes através de dados clinicamente relevantes para individualizar as condutas clínicas são necessárias. Dentro deste contexto surge o conceito de radiômica, que visa extrair dados clinicamente relevantes a partir de imagens médicas. Entretanto, para colocar a radiômica em prática, é necessário selecionar, nas imagens médicas, as áreas de interesse referentes às patologias estudadas, e este processo se denomina segmentação. O objetivo primário deste estudo foi avaliar a reprodutibilidade intra e inter-observador da segmentação manual de sarcomas ósseos em imagens de ressonância magnética (RM). Como objetivo secundário, foi avaliada a capacidade da segmentação semiautomática em reduzir o tempo necessário para segmentação, mantendo similaridade com a segmentação manual. O estudo foi realizado de forma retrospectiva com inclusão de pacientes com diagnóstico de osteossarcoma ou sarcoma de Ewing confirmado por estudo histopatológico e que tivessem imagens de RM realizadas no Hospital Universitário de nossa Instituição realizadas previamente a qualquer intervenção terapêutica. Três médicos radiologistas, de forma independente e às cegas em relação as demais segmentações e em relação ao resultado histopatológico, realizaram a segmentação manual dos contornos destes tumores utilizando o software 3DSlicer, permitindo que fosse realizada avaliação da reprodutibilidade interobservador. Um dos radiologistas realizou uma segunda segmentação manual dos mesmos casos, possibilitando a avaliação da reprodutibilidade intraobservador, e, ainda, uma terceira segmentação foi realizada, utilizando metodologia semiautomática, disponível no software mencionado. Para a análise estatística, foi utilizado o coeficiente de similaridade de Dice (DICE), a distância Hausdorff (DH), comparações de volumes e análises dos intervalos de tempo necessários para realização das segmentações. Os parâmetros avaliados demonstraram haver boa reprodutibilidade intraobservador, com DICE variando entre 0,83 a 0,97; e distância Hausdorff variando entre 3,37 a 28,73 mm. Também foi demonstrada boa reprodutibilidade interobservador com DICE variando entre 0,73 a 0,97; e distância Hausdorff variando entre 3,93 a 33,40 mm. A segmentação semiautomática demonstrou boa similaridade em relação à segmentação manual (DICE variando entre 0,71 a 0,96 e DH variando entre 5,38 a 31,54 mm), havendo redução significativa do tempo necessário para segmentação. Entre todas as situações comparadas, os volumes não apresentaram diferenças estatisticamente significativas (p-valor>0,05). / Bone sarcomas represent a significant proportion of tumors in the pediatric age group and they still are a challenge due to their significant morbidity and mortality rates. Reseaches are important for the development of new therapeutic modalities and for the development of methods that identify features that allow better stratification of the patients with theses diseases for individualization of their treatments. In this context emerges the concept of radiomics, which is the process of extraction of clinically relevant data from medical images. It is important to segment the areas of interest im medical images for the pratice of this process. The primary objective of this study was to evaluate the intra- and interobserver reproducibility of manual segmentation of bone sarcomas on magnetic resonance imaging (MRI). As a secondary objective, it was evaluated if the semiautomatic segmentation could be similar to manual segmentation and if the semiautomatic method could reduce the time required for segmentation. The study was performed retrospectively with the inclusion of patients with osteosarcoma or Ewing sarcoma confirmed by histopathological study and who had MRI performed at the University Hospital of our Institution prior to any therapeutic intervention. Three radiologists, independently and blindly in relation to the other segmentations and in relation to the histopathological results, performed the manual segmentation of the contours of these tumors using 3DSlicer software, allowing an interobserver reproducibility evaluation. One of the radiologists performed a second manual segmentation of the same cases, allowing the evaluation of intraobserver reproducibility. A third segmentation was performed, using semi-automatic methodology, available in the mentioned software. For the statistical analysis, Dice similarity coefficient (DICE), Hausdorff distance (DH), comparisons between volumes and time intervals for segmentations were used. The parameters evaluated demonstrated a good intraobserver reproducibility, with DICE ranging from 0.83 to 0.97 and Hausdorff distance ranging from 3.37 to 28.73 mm. Good interobserver reproducibility was also demonstrated with DICE ranging from 0.73 to 0.97 and Hausdorff distance ranging from 3.93 to 33.40 mm. Semiautomatic segmentation demonstrated good similarity to manual segmentation (DICE ranging from 0.71 to 0.96 and HD ranging from 5.38 to 31.54mm), and there was significant reduction in the time required for segmentation. Among all the situations compared, the volumes did not present significant statistical differences (p-value> 0.05).
|
352 |
Segmentação de imagens de rochas e classificação de litofácies utilizando floresta de caminhos ótimos / Segmentation of rock images and lithofacies classification using optimum-path forestMingireanov Filho, Ivan, 1977- 22 August 2018 (has links)
Orientadores: Alexandre Campane Vidal, Alexandre Xavier Falcão / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-22T17:02:26Z (GMT). No. of bitstreams: 1
MingireanovFilho_Ivan_M.pdf: 33856245 bytes, checksum: 516137beeec348cf169f06272d16b0cb (MD5)
Previous issue date: 2013 / Resumo: A caracterização de reservatórios é fundamental na construção do modelo geológico para a produção do campo. O melhoramento de técnicas matemáticas, que auxiliam a interpretação geológica, influencia diretamente o plano de desenvolvimento e gerenciamento dos poços. Nesse sentido, este trabalho utiliza uma aplicação inédita na caracterização de reservatórios da técnica de Transformada Imagem Floresta (Image Foresting Transform - IFT) em segmentação de imagens de rocha para a análise petrofísica. A técnica interpreta a imagem como um grafo, onde os pixels são os nós e os arcos são definidos por uma relação de adjacência entre os pixels. O custo de um caminho no grafo é determinado por uma função que depende das propriedades locais da imagem. As raízes da floresta surgem de um conjunto de pixels escolhidos como sementes e a IFT atribui um caminho de custo mínimo das sementes a cada pixel da imagem para gerar uma Floresta de Caminhos Ótimos (Optimum-Path Forest - OPF). Com isso, nas imagens de lâminas de arenito, os grãos são segmentados em relação ao poro e os grãos em contato são separados entre si. Com os resultados obtidos é possível o estudo da morfologia dos grãos e porosidade da amostra. O método consiste de dois processos principais, um totalmente automático para segmentar a imagem e outro que utiliza uma interface gráfica para permitir correções dos erros de classificação gerados pelo processo automático. A acurácia é medida comparando a imagem corrigida por interação do usuário com a segmentada automaticamente. Outra aplicação inédita apresentada no trabalho é a utilização do classificador supervisionado baseado em OPF para a classificação de dados de perfilagem geofísica do campo de Namorado / Abstract: The reservoir characterization is fundamental in the construction process of geological model for field production. The improvement of mathematical techniques that assist the geological interpretation, has a directly influence in the development plan and management of the wells. Accordingly, this study uses a novel application in reservoir characterization, Image Foresting Forest (IFT) technique to image segmentation of rock for petrophysical analysis. The IFT interprets an image as a graph, whose nodes are the image pixels, the arcs are defined by an adjacency relation between pixels, and the paths are valued by a connectivity function. The roots of forest are a set of pixels selected as seeds and the IFT assigns a minimum path-cost to each image pixel generation an Optimum-Path Forest (OPF). The result is a segmentation of grains from pore in sandstone thin section images and the separation of the touching grains automatically. This allows the study of grain morphology and sample porosity. The method consists of two major processes: first, a totally automatic image segmentation and second and user interaction to correct misclassified grains. The accuracy is computed comparing the corrected image by the user with the image segmented automatically. Another novel application presented in the work is the use of supervised classification based on OPF for classification of geophysical logging data from Campo de Namorado / Mestrado / Reservatórios e Gestão / Mestre em Ciências e Engenharia de Petróleo
|
353 |
Chirurgie orthopédique assistée par ordinateur : application au traitement de l'arthrose du genou / Computer-assisted orthopedic surgery : application to the knee osteoarthritis treatmentDib, Zoheir 25 September 2017 (has links)
L’arthrose est un véritable problème de santé publique. Plus de dix millions de personnes sont atteintes en France et 35 millions aux États-Unis. L’arthrose du genou représente 35% du nombre total d’arthrose avec plus de 1,3 million de patients en Europe. Il existe de nos jours plusieurs solutions permettant de traiter l’arthrose du genou, suivant le caractère dégénératif de la maladie, allant du traitement chirurgical conservateur, tel que l’ostéotomie supérieure du tibia, jusqu’au traitement chirurgical prothétique, tel que l’arthroplastie totale du genou. Le succès à long terme de ces interventions repose (1) sur le contrôle de l’alignement du membre inférieur au cours de l’intervention, réalisé par l’intermédiaire de l’angle HKA entre les centres hanche, genou et cheville, et (2) sur une planification chirurgicale permettant de préparer l’intervention, et notamment, définir la position optimale des coupes osseuses pour la mise en place d’une prothèse à partir de modèles 3D de l’os du patient issus d’images tomodensitométriques (TDM) ou IRM. Nous nous sommes intéressés, dans un premier temps, à l’étude et l’évaluation, dans un contexte clinique, de la précision et la robustesse des techniques utilisées en chirurgie assistée par ordinateur pour la localisation du centre hanche, nécessaire au calcul de l’angle HKA. Nous avons ainsi proposé une nouvelle méthode, mini-invasive, et particulièrement adaptée pour l’ostéotomie supérieure du tibia. Nous nous sommes ensuite intéressés aux méthodes de segmentation permettant d’extraire la surface osseuse du genou à partir d’IRM pour la phase de planification. Nous avons également proposé une nouvelle approche, automatique, qui se base sur des modèles actifs de forme ou Active Shape Model (ASM). Compte tenu des résultats très encourageants, l’intégration de nos contributions en routine clinique pourrait, potentiellement, améliorer le service médical rendu pour le traitement de l’arthrose du genou. / Osteoarthritis is a real public health problem. More than ten million people are affected by osteoarthritis in France and 35 million in the United States. Knee Osteoarthritis represents 35% of the total number of osteoarthritis with more than 1.3 million patients in Europe. Today, there are several solutions to treat knee osteoarthritis depending on the degenerative nature of the disease : from conservative surgical treatment, such as High tibia Osteotomy (HTO), to prosthetic surgical treatment, such as Total Knee arthroplasty (TKA). The long-term success of these interventions is (1) the control of the lower limb alignment, during the intervention, which can be obtained by measuring the HKA angle between the hip, the knee and the ankle centers, and (2) the surgical planning allowing the preparation of the intervention, and for instance, the definition of the optimal cuts for the placement of a knee prosthesis based on the 3D model of the patient bone obtained from computerized tomography (CT) or MRI. We were interested, first, in the study and evaluation, in a clinical context, of the accuracy and precision of the methods used in computer-assisted orthopedic surgery for the localization of the hip center. We have thus proposed a new minimally invasive method especially adapted to HTO. We were interested, then, to the segmentation methods allowing the extraction of the knee bony surface from MRI for the surgical planning. We have also proposed a new automatic approach based on active shape models (ASM). Given the very encouraging results, the integration of our contributions in the clinical routine could, potentially, improve the medical benefits for the treatment of knee osteoarthritis.
|
354 |
Segmentation and Symbolic Representation of Brain Vascular Network : Application to ArterioVenous Malformations / Segmentation et Représentation Symbolique du Réseau Vasculaire Cérébral : Application à Artérioveineuse MalformationsLi, Fan 01 June 2016 (has links)
Le traitement et l’analyse d’images angiographiques rotationnelles 3D (3DRA) de haute résolution spatiale pour l’aide à la planification d’interventions en neuroradiologie interventionnelle est un domaine de recherche récent et en plein essor. Les neuroradiologues ont besoin d’outils interactifs pour la planification des procédures d’embolisation et l’optimisation du guidage de microcathéters durant les interventions endovasculaires. L’exploitation des données d’imagerie pour l’aide au diagnostic et la thérapeutique requiert le développement d’algorithmes robustes et de méthodes efficaces. Ces méthodes permettent d’intégrer les informations contenues dans ces images pour en extraire des descripteurs anatomiques utiles durant les phases pre et per-opératoires.Cette thèse est dédiée au développement d’une chaine de traitement complète comprenant la segmentation, la reconstruction tridimensionnelle (3D) et la représentation symbolique de vaisseaux cérébraux à partir d’images 3DRA, pour faciliter la planification d’interventions d’embolisation pour le traitement de Malformations ArtérioVeineuses cérébrales (MAVs).La première partie du travail est consacrée à l’étude des différentes approches utilisées en segmentation des vaisseaux. Deux méthodes de segmentation sont ensuite proposées. Tout d’abord, une méthode de segmentation 2D coupe par coupe est développée ainsi qu’un technique robuste de suivi de vaisseaux permettant de détecter les bifurcations et de poursuivre le tracking de plusieurs branches du même vaisseau. Un maillage basé sur la triangulation Contrainte de Delaunay permet ensuite la reconstruction et la visualisation 3D des vaisseaux ainsi obtenus. Une méthode de segmentation 3D automatisée des images 3DRA est ensuite développée, elle présente l’avantage d’être plus rapide et de traiter le volume d’images entier en 3D. Cette méthode est basée sur la croissance de régions. Le processus 3D démarre à partir d’une coupe initiale pré-segmentée en utilisant la reconstruction géodésique et sur laquelle les germes sont placés de manière automatique. Finalement, une représentation du réseau vasculaire sur laquelle on distingue clairement les trois entités que sont les artères, les veines drainantes et le nidus est obtenue.La deuxième partie de la thèse est consacrée à la représentation symbolique des vaisseaux. L'étude hiérarchique du squelette permet de donner une description graphique du réseau vasculaire cérébral. A partir de cette description graphique, les vaisseaux et leurs branches sont labellisés et un ou plusieurs vaisseaux peuvent être isolés du reste du réseau pour une analyse visuelle plus précise, ce qui n’est pas possible avec les reconstructions 3D du constructeur. De plus, cette représentation améliore la détermination des chemins optimaux pour l’embolisation de la MAV et réduit la complexité due à l’enchevêtrement des vaisseaux malformés.La chaine de traitement complète ainsi développée aboutit à une description 3D précise des vaisseaux. Elle permet une meilleure compréhension structurelle du réseau vasculaire cérébral et offre aux neuroradiologues la possibilité d’extraire des descripteurs anatomiques, et géométriques (taille, diamètre…) des vaisseaux. Enfin, une étape de vérification des résultats par un expert neuroradiologue a permis la validation clinique des résultats de segmentation et de reconstruction 3D. L’intégration des algorithmes développés dans une interface graphique intuitive et facile d’utilisation devra être faite pour permettre l’exploitation de nos résultats en routine clinique / The processing and analysis of 3D Rotational Angiographic images (3DRA) of high spatial resolution to facilitate intervention planning in interventional neuroradiology is a new and booming research area. Neuroradiologists need interactive tools for the planning of embolization procedures and the optimization of the guidance of micro-catheters during endovascular interventions. The exploitation of imaging data to help in diagnosis and treatment requires the development of robust algorithms and efficient methods. These methods allow integrating information included in these images in order to extract useful anatomical descriptors during preoperative and peroperative phases.This thesis is dedicated to the development of a complete processing pipeline including segmentation, three-dimensional (3D) reconstruction and symbolic representation of cerebral vessels from 3DRA images, aiming to facilitate the embolization intervention planning for the treatment of cerebral ArterioVenous Malformations (AVMs).The first part of the work is devoted to the study of the different approaches used for the segmentation of vessels. Two segmentation methods are then proposed. First, a 2D slice-by-slice segmentation method is developed, followed by a robust vessel tracking process that enables detecting bifurcations and further following several branches of the same vessel. A mesh based on the Constrained Delaunay triangulation allows then the 3D reconstruction and visualization of the obtained vessels. An automated 3D segmentation method of 3DRA images is then developed, which presents the advantage of being faster and processing the whole 3D volume of images. This method is region growing based. The 3D process starts from an initial pre-segmented slice using the geodesic reconstruction, where the seeds are automatically placed. Finally, a representation of the vasculature is obtained, in which these three entities are clearly visible: the feeding arteries, the draining veins and the nidus.The second part of the thesis is devoted to the symbolic representation of the vessels. The hierarchical study of the skeleton allows giving a graphic description of the cerebral vascular network. From this graphic description, the vessels and their branches are labeled and one or more vessels can be isolated from the rest of network for a more accurate visual analysis, which is not possible with the original 3D reconstructions. Moreover, this improves the determination of the optimal paths for the AVM embolization and reduces the complexity due to the entanglement of the malformed vessels.The complete processing pipeline thus developed leads to a precise 3D description of the vessels. It allows a better understanding of the cerebral vascular network structure and provides the possibility to neuroradiologists of extracting anatomical and geometric descriptors (size, diameter...) of the vessels. Finally, a verification step of the results by a neuroradiology expert enabled clinical validation of the 3D segmentation and reconstruction results. The integration of the developed algorithms in a user-friendly graphical interface should be achieved to allow the exploitation of our results in clinical routine
|
355 |
Semantic structuring of video collections fromspeech : segmentation and hyperlinking / Structuration sémantique des collections vidéos à partir du discours : segmentation et création d'hyperliensŞimon, Anca-Roxana 02 December 2015 (has links)
Au cours des dernières années, de nouveaux challenges ont émergé avec la transformation très significative du paysage audiovisuel due à l'émergence de la télévision sur Internet. La décision de ce qui est regardé et dans quel ordre n'appartient en effet plus à la chaîne TV concernée mais à l'utilisateur. De nouveaux moyens facilitant l'accès précis et rapide à l'information souhaitée au sein des quantités toujours croissantes de contenus audiovisuels doivent donc être proposés aux utilisateurs : par exemple, pour repérer un événement spécifique, un fragment d'émission contenant une certaine personnalité ou abordant un sujet particulier, voire pour naviguer successivement entre tous les segments de vidéos abordant ce sujet. Ces fonctionnalités nouvelles et variées impliquent le développement de méthodes novatrices de structuration et d'exploitation des contenus audiovisuels, sujet abordé dans cette thèse. Nous proposons d'une part des techniques automatiques de structuration thématique des données audiovisuelles permettant de révéler l'organisation interne de chaque programme. Nous étudions également les implications de la structure produite sur diverses tâches telles que la création d'hyperliens entre vidéos (afin de permettre une navigation entre fragments d'émissions thématiquement proches) ou la création de résumés automatiques. L'ensemble des travaux menés est effectué sur les transcriptions automatiques de la parole prononcée dans les émissions, afin d'obtenir des solutions génériques, non dédiées à un type de programme particulier. / New challenges emerged in the past years as the audiovisual landscape significantly transformed with the emergence of Internet-based TV. The decision of what to watch and in what order no longer belongs to the TV station but the user. New solutions must be offered to users in order to facilitate precise and quick access to the desired information contained in the ever increasing amounts of audiovisual content: for example, to identify a specific event, a TV show fragment containing a certain public person or addressing a particular topic, or to browse sequentially across all segments of videos addressing this topic. These new and varied features imply the development of innovative methods for structuring and exploiting the audiovisual content, which represent the focus of this thesis. We offer automatic topic structuring techniques of audiovisual data to reveal the internal organization of each program. We also study the implications of the structure produced on various tasks such as creating hyperlinks between videos (to allow navigation between TV show fragments that are thematically related) or creating automatic summaries. All the work is carried out on automatic transcripts of the speech pronounced in TV shows, to achieve generic solutions, not dedicated to a particular kind of show.
|
356 |
Segmentation de processus avec un bruit autorégressif / Segmenting processes with an autoregressive noiseChakar, Souhil 22 September 2015 (has links)
Nous proposons d’étudier la méthodologie de la segmentation de processus avec un bruit autorégressif sous ses aspects théoriques et pratiques. Par « segmentation » on entend ici l’inférence de points de rupture multiples correspondant à des changements abrupts dans la moyenne de la série temporelle. Le point de vue adopté est de considérer les paramètres de l’autorégression comme des paramètres de nuisance, à prendre en compte dans l’inférence dans la mesure où cela améliore la segmentation.D’un point de vue théorique, le but est de conserver un certain nombre de propriétés asymptotiques de l’estimation des points de rupture et des paramètres propres à chaque segment. D’un point de vue pratique, on se doit de prendre en compte les limitations algorithmiques liées à la détermination de la segmentation optimale. La méthode proposée, doublement contrainte, est basée sur l’utilisation de techniques d’estimation robuste permettant l’estimation préalable des paramètres de l’autorégression, puis la décorrélation du processus, permettant ainsi de s’approcher du problème de la segmentation dans le cas d’observations indépendantes. Cette méthode permet l’utilisation d’algorithmes efficaces. Elle est assise sur des résultats asymptotiques que nous avons démontrés. Elle permet de proposer des critères de sélection du nombre de ruptures adaptés et fondés. Une étude de simulations vient l’illustrer. / We propose to study the methodology of autoregressive processes segmentation under both its theoretical and practical aspects. “Segmentation” means here inferring multiple change-points corresponding to mean shifts. We consider autoregression parameters as nuisance parameters, whose estimation is considered only for improving the segmentation.From a theoretical point of view, we aim to keep some asymptotic properties of change-points and other parameters estimators. From a practical point of view, we have to take into account the algorithmic constraints to get the optimal segmentation. To meet these requirements, we propose a method based on robust estimation techniques, which allows a preliminary estimation of the autoregression parameters and then the decorrelation of the process. The aim is to get our problem closer to the segmentation in the case of independent observations. This method allows us to use efficient algorithms. It is based on asymptotic results that we proved. It allows us to propose adapted and well-founded number of changes selection criteria. A simulation study illustrates the method.
|
357 |
Plongement de surfaces continues dans des surfaces discrètes épaisses. / Embedding continuous surfaces into discrete thick surfaces.Dutailly, Bruno 19 December 2016 (has links)
Dans le contexte des sciences archéologiques, des images tridimensionnelles issues de scanners tomodensitométriques sont segmentées en régions d’intérêt afin d’en faire une analyse. Ces objets virtuels sont souvent utilisés dans le but d’effectuer des mesures précises. Une partie de ces analyses nécessite d’extraire la surface des régions d’intérêt. Cette thèse se place dans ce cadre et vise à améliorer la précision de l’extraction de surface. Nous présentons dans ce document nos contributions : tout d’abord, l’algorithme du HMH pondéré dont l’objectif est de positionner précisément un point à l’interface entre deux matériaux. Appliquée à une extraction de surface, cette méthode pose des problèmes de topologie sur la surface résultante. Nous avons donc proposé deux autres méthodes : la méthode du HMH discret qui permet de raffiner la segmentation d’objet 3D, et la méthode du HMH surfacique qui permet une extraction de surface contrainte garantissant l’obtention d’une surface topologiquement correcte. Il est possible d’enchainer ces deux méthodes sur une image 3D pré-segmentée afin d’obtenir une extraction de surface précise des objets d’intérêt. Ces méthodes ont été évaluées sur des acquisitions simulées d’objets synthétiques et des acquisitions réelles d’artéfacts archéologiques. / In the context of archaeological sciences, 3D images produced by Computer Tomography scanners are segmented into regions of interest corresponding to virtual objects in order to make some scientific analysis. These virtual objects are often used for the purpose of performing accurate measurements. Some of these analysis require extracting the surface of the regions of interest. This PhD falls within this framework and aims to improve the accuracy of surface extraction. We present in this document our contributions : first of all, the weighted HMH algorithm whose objective is to position precisely a point at the interface between two materials. But, applied to surface extraction, this method often leads to topology problems on the resulting surface. So we proposed two other methods : The discrete HMH method which allows to refine the 3D object segmentation, and the surface HMH method which allows a constrained surface extraction ensuring a topologically correct surface. It is possible to link these two methods on a pre-segmented 3D image in order to obtain a precise surface extraction of the objects of interest These methods were evaluated on simulated CT-scan acquisitions of synthetic objects and real acquisitions of archaeological artefacts.
|
358 |
A Novel 3-D Segmentation Algorithm for Anatomic Liver and Tumor Volume Calculations for Liver Cancer Treatment PlanningGoryawala, Mohammed 23 March 2012 (has links)
Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning including minimal invasive surgery, targeted drug delivery, and tumor resection. Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are essential for the determination of the tumor to normal liver ratio and for the calculation of the dose of Y-90 microspheres that will result in high concentration of the radiation in the tumor region as compared to nearby healthy tissue. Present manual techniques for segmentation of the liver from Computed Tomography (CT) tend to be tedious and greatly dependent on the skill of the technician/doctor performing the task.
This dissertation presents the development and implementation of a fully integrated algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as designed requires minimal human intervention without compromising the accuracy of the segmentation results. Embedded within this algorithm is an effective method for extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate treatment.
Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes in 20 datasets in comparison to the manual gold standard volumes. In a similar comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated the effectiveness of the algorithm in extracting and rendering the vasculature structure of the liver. Results of the parallel computing process, using a single workstation, showed a 78% gain. Also, statistical analysis carried out to determine if the manual initialization has any impact on the accuracy showed user initialization independence in the results.
The dissertation thus provides a complete 3-D solution towards liver cancer treatment planning with the opportunity to extract, visualize and quantify the needed statistics for liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and tumor volumes, this new method provides an effective and computationally efficient process required of such challenging clinical requirements.
|
359 |
Haptic Image ExplorationLareau, David January 2012 (has links)
The haptic exploration of 2-D images is a challenging problem in computer haptics. Research on the topic has primarily been focused on the exploration of maps and curves. This thesis describes the design and implementation of a system for the haptic exploration of photographs. The system builds on various research directions related to assistive technology, computer haptics, and image segmentation. An object-level segmentation hierarchy is generated from the source photograph to be rendered haptically as a contour image at multiple levels-of-detail. A tool for the authoring of object-level hierarchies was developed, as well as an innovative type of user interaction by region selection for accurate and efficient image segmentation. According to an objective benchmark measuring how the new method compares with other interactive image segmentation algorithms shows that our region selection interaction is a viable alternative to marker-based interaction. The hierarchy authoring tool combined with precise algorithms for image segmentation can build contour images of the quality necessary for the images to be understood by touch with our system. The system was evaluated with a user study of 24 sighted participants divided in different groups. The first part of the study had participants explore images using haptics and answer questions about them. The second part of the study asked the participants to identify images visually after haptic exploration. Results show that using a segmentation hierarchy supporting multiple levels-of-detail of the same image is beneficial to haptic exploration. As the system gains maturity, it is our goal to make it available to blind users.
|
360 |
Conception de métaheuristiques d'optimisation pour la segmentation d'images : application aux images IRM du cerveau et aux images de tomographie par émission de positons / Metaheuristics optimisation for image segmentation : application to brain MRI images and positron emission tomography imagesBenaichouche, Ahmed Nasreddine 10 December 2014 (has links)
La segmentation d'image est le processus de partitionnement d'une image numérique en régions, non chevauchées, homogènes vis-à-vis de certaines caractéristiques, telles que le niveau de gris, la texture, le mouvement, etc. Elle a des applications dans plusieurs domaines comme l'imagerie médicale, la détection d'objets, la biométrie, l'imagerie par satellite, la navigation de robot, la vidéosurveillance, etc. Le processus de segmentation représente une étape cruciale dans les systèmes de vision par ordinateur, car les caractéristiques et décisions sont extraites et prises à partir de son résultat. Les premiers algorithmes de segmentation d'image ont vu le jour dans les années 1970. Depuis, de nombreuses techniques et méthodes de segmentation ont été expérimentées pour essayer d'améliorer les résultats. Néanmoins, jusqu'à nos jours, aucun algorithme de segmentation d'image n'arrive à fournir des résultats parfaits sur une large variété d'images. Les "métaheuristiques" sont des procédures conçues pour résoudre des problèmes d'optimisation dits difficiles. Ce sont en général des problèmes aux données incomplètes, incertaines, bruitées ou confrontés à une capacité de calcul limitée. Les métaheuristiques ont connu un succès dans une large variété de domaines. Cela découle du fait qu'elles peuvent être appliquées à tout problème pouvant être exprimé sous la forme d'un problème d'optimisation de critère(s). Ces méthodes sont, pour la plupart, inspirées de la physique (recuit simulé), de la biologie (algorithmes évolutionnaires) ou de l'éthologie (essaims particulaires, colonies de fourmis).Ces dernières années, l'introduction des métaheuristiques dans le domaine du traitement d'images a permis d'étudier la segmentation sous un angle différent, avec des résultats plus ou moins réussis. Dans le but d'apporter notre contribution et d'améliorer davantage les performances des méthodes de segmentation, nous avons proposé des algorithmes basés régions, contours et hybrides, mettant en œuvre des métaheuristiques d'optimisation dans des approches mono et multiobjectif. Les méthodes proposées ont été évaluées sur des bases de données expérimentales composées d'images synthétiques, d'images IRM simulées et d'images IRM réelles ainsi que des images de tomographie par émission de positons (TEP). Les résultats obtenus sont significatifs et prouvent l'efficacité des idées proposées / Image segmentation is the process of partitioning a digital image into homogeneous non-overlapped regions with respect to some characteristics, such as gray value, motion, texture, etc. It is used in various applications like medical imaging, objects detection, biometric system, remote sensing, robot navigation, video surveillance, etc. The success of the machine vision system depends heavily on its performance, because characteristics and decisions are extracted and taken from its result. The first image segmentation algorithms were introduced in the 70's. Since then, various techniques and methods were experimented to improve the results. Nevertheless, up till now, no method produces a perfect result for a wide variety of images. Metaheuristics are a high level procedure designed to solve hard optimization problems. These problems are in general characterized by their incomplete, uncertain or noised data, or faced to low computing capacity. Metaheuristics have been extremely successful in a wide variety of fields and demonstrate significant results. This is due to the fact that they can applied to solve any problem which can be formulated as an optimization problem. These methods are, mainly, inspired from physics (simulated annealing), biology (evolutionary algorithms), or ethology (particle swarm optimization, ant colony optimization).In recent years, metaheuristics are starting to be exploited to solve segmentation problems with varying degrees of success and allow to consider the problem with different perspectives. Bearing this in mind, we propose in this work three segmentation and post-segmentation approaches based on mono or multiobjective optimization metaheuristics. The proposed methods were evaluated on databases containing synthetic images, simulated MRI images, real MRI images and PET images. The obtained results show the efficiency of the proposed ideas
|
Page generated in 0.0877 seconds