Spelling suggestions: "subject:"freiberg"" "subject:"scheibenberg""
1 |
The Seiberg-Witten invariant on non-Kahler complex surfaces / Stuart R. Williams.Williams, Stuart R. January 1997 (has links)
Bibliography: leaves 66-70. / v, 70 leaves ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / "The goal of this thesis is to calculate the Seiberg-Witten invariant for complex surfaces, X, with odd first betti number, that is complex surfaces that do not admit a Kahler metric". / Thesis (Ph.D.)--University of Adelaide, Dept. of Pure Mathematics, 1997
|
2 |
Seiberg-Witten monopoles on three-manifolds / Bai-Ling Wang.Wang, Bai-Ling January 1997 (has links)
Bibliography: p. 135-138. / 140 p. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Pure Mathematics, 1998?
|
3 |
Higher derivative terms and their influence on N=2 supersymmetric systemsWeir, William Alexander January 1999 (has links)
This thesis is concerned with so-called higher derivative terms which arise in low energy approximations to certain physical models. In particular, the aim is to investigate the role that such terms play in low energy N=2 supersymmetric gauge theories in 4 dimensions, with gauge group SU(2).Chapter one serves as an introduction to the notions of supersymmetry and superfields. The problem of constructing an effective action which describes the low energy dynamics is introduced, and the construction of the Wilsonian action in terms of light and heavy modes is developed. The concept on a derivative expansion is also described. Chapter two introduces N=2 supersymmetric gauge theories with spontaneous symmetry breaking. It is observed that such systems always have a Bogomolnyi bound, and the consequences are discussed. We then develop a derivative expansion of this system in terms of N=2 superfields, drawing particular attention to the next-to- leading order derivative term (that is, those with 4 derivatives/8 fermions). The duality properties of such a term are reviewed, and their impact on the mass formula discussed. Conclusions are drawn as to their influence on the results of Seiberg and Witten. Chapter three deals with a non-renormalisation theorem for the next-to-leading order higher derivative term proposed by Dine and Seiberg. This states that instanton contributions to such a term in massless N=2 SU(N(_c)) gauge theories vanish when the number of flavours N(_f) = 2N(_c). We prove this result using the ADHM formalism for multi-instantons in the case N(_c) = 2.
|
4 |
A survey of Seiberg-Witten theory and its applications to 4-manifolds.January 2007 (has links)
Chan, Kai Leung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 106-109). / Abstracts in English and Chinese. / Chapter 0 --- Introduction --- p.7 / Chapter I --- Background Scenery --- p.10 / Chapter 1 --- Seiberg-Witten Invariants --- p.11 / Chapter 1.1 --- Preliminaries --- p.11 / Chapter 1.2 --- Construction of Seiberg-Witten Invariants --- p.17 / Chapter 1.2.1 --- Seiberg-Witten Equations and the Moduli Space --- p.17 / Chapter 1.2.2 --- Seiberg-Witten Invariants --- p.19 / Chapter 1.2.3 --- Remarks --- p.20 / Chapter 1.2.4 --- Seiberg-Witten Invariants for b+2= 1 --- p.22 / Chapter 1.3 --- Important Results of Seiberg-Witten Invariants --- p.23 / Chapter 1.3.1 --- Manifolds Admit Positive Scalar Metrics --- p.23 / Chapter 1.3.2 --- Connected Sums --- p.25 / Chapter 1.3.3 --- Kahler Surfaces --- p.27 / Chapter 1.3.4 --- Symplectic Manifolds --- p.30 / Chapter 2 --- Intersection Forms --- p.32 / Chapter 2.1 --- Intersection Forms of 4-manifolds --- p.32 / Chapter 2.2 --- Classification Theorem --- p.34 / Chapter 2.3 --- Review: Van Kampen's Theorem --- p.35 / Chapter 3 --- Kirby Calculus --- p.37 / Chapter 3.1 --- Review on Handle Decompositions --- p.37 / Chapter 3.1.1 --- Constructions --- p.38 / Chapter 3.1.2 --- Handle Slides and Cancellations --- p.42 / Chapter 3.1.3 --- Calculation of Homology Groups --- p.44 / Chapter 3.2 --- Kirby Diagrams --- p.45 / Chapter 3.2.1 --- Constructions --- p.45 / Chapter 3.2.2 --- Handle Slides and Cancellations --- p.50 / Chapter 3.2.3 --- Dotted Notation for 1-handles --- p.56 / Chapter 3.3 --- 3-Manifolcis: As Boundaries of 4-Manifolds --- p.60 / Chapter 3.3.1 --- Introduction --- p.60 / Chapter 3.3.2 --- Lens spaces --- p.62 / Chapter 3.4 --- Linear Plumbing --- p.63 / Chapter 3.5 --- Rational Blowdown --- p.65 / Chapter II --- Examples of Exotic Structures --- p.71 / Chapter 4 --- mCP2#kCP2 --- p.72 / Chapter 4.1 --- Introduction --- p.72 / Chapter 4.2 --- Example: CP2#7CP2 --- p.73 / Chapter 4.3 --- Progress of Researches --- p.85 / Chapter 5 --- Gluing Results in Seiberg-Witten Theory --- p.89 / Chapter 5.1 --- Revisit of Seiberg-Witten Invariants --- p.89 / Chapter 5.2 --- Fiber Sums and its Generalization --- p.91 / Chapter 5.3 --- Logarithmic transformations and its Generalization --- p.93 / Chapter 5.4 --- Knot Theory and Alexander Polynomials --- p.96 / Chapter 5.5 --- Main Theorem --- p.102 / Bibliography --- p.106
|
5 |
Uma introdução à dualidade e a teoria de Seiberg e Witten /Leite, Érica Emília. January 1998 (has links)
Orientador: Luiz Agostinho Ferreira / Mestre
|
6 |
Uma introdução à dualidade e a teoria de Seiberg e WittenLeite, Érica Emília [UNESP] January 1998 (has links) (PDF)
Made available in DSpace on 2016-01-13T13:27:24Z (GMT). No. of bitstreams: 0
Previous issue date: 1998. Added 1 bitstream(s) on 2016-01-13T13:32:46Z : No. of bitstreams: 1
000087536.pdf: 2497238 bytes, checksum: c073778c2980553d9a5cdaf3c95d611d (MD5)
|
7 |
Métriques kählériennes de volume fini, uniformisation des surfaces complexes réglées et équations de Seiberg-WittenRollin, Yann 09 January 2001 (has links) (PDF)
Let M=P(E) be a ruled surface. We introduce metrics of finite volume on M whose singularities are parametrized by a parabolic structure over E. Then, we generalise results of Burns--de Bartolomeis and LeBrun, by showing that the existence of a singular Kahler metric of finite volume and constant non positive scalar curvature on M is equivalent to the parabolic polystability of E; moreover these metrics all come from finite volume quotients of $H^2 \times CP^1$. In order to prove the theorem, we must produce a solution of Seiberg-Witten equations for a singular metric g. We use orbifold compactifications $\overline M$ on which we approximate g by a sequence of smooth metrics; the desired solution for g is obtained as the limit of a sequence of Seiberg-Witten solutions for these smooth metrics.
|
8 |
Computations of Floer homology and gauge theoretic invariants for Montesinos twinsKnapp, Adam C. January 2008 (has links)
Thesis (Ph.D.)--Michigan State University. Dept. of Mathematics, 2008. / Title from PDF t.p. (viewed on July 6, 2009) Includes bibliographical references (p. 72-74). Also issued in print.
|
9 |
Generalized Seiberg-Witten and the Nahm TransformRaymond, Robin 24 January 2018 (has links)
No description available.
|
10 |
On the Riemannian geometry of Seiberg-Witten moduli spacesBecker, Christian January 2005 (has links)
<p>In this thesis, we give two constructions for Riemannian metrics on
Seiberg-Witten moduli spaces. Both these constructions are
naturally induced from the L2-metric on the configuration space.
The construction of the so called quotient L2-metric is very similar
to the one construction of an L2-metric on Yang-Mills moduli spaces as
given by Groisser and Parker. To construct a Riemannian metric on
the total space of the Seiberg-Witten bundle in a similar way, we define the reduced gauge group as a subgroup of the gauge group. We show, that the quotient of the premoduli space by the reduced gauge group is
isomorphic as a U(1)-bundle to the quotient of the premoduli space by the based gauge group. The total space of this new representation of the Seiberg-Witten bundle carries a natural quotient L2-metric, and the bundle projection is a
Riemannian submersion with respect to these metrics. We compute explicit formulae for the sectional curvature of the moduli space in terms of Green operators of the elliptic complex associated with a monopole. Further, we construct a Riemannian metric on the cobordism between moduli spaces for
different perturbations. The second construction of a Riemannian metric on
the moduli space uses a canonical global gauge fixing, which represents the total space of the Seiberg-Witten bundle as a finite dimensional submanifold of the configuration space.</p>
<p>We consider the Seiberg-Witten moduli space on a simply
connected Käuhler surface. We show that the moduli space
(when nonempty) is a complex projective space, if the perturbation
does not admit reducible monpoles, and that the moduli space consists of a single point otherwise. The Seiberg-Witten bundle can then be identified with the Hopf fibration.
On the complex projective plane with a special Spin-C structure, our Riemannian metrics on the
moduli space are Fubini-Study metrics. Correspondingly, the metrics on
the total space of the Seiberg-Witten bundle are Berger
metrics. We show that the diameter of the moduli space shrinks to 0 when the perturbation approaches the wall of reducible perturbations.
Finally we show, that the quotient L2-metric on the Seiberg-Witten moduli space
on a Kähler surface is a Kähler metric.</p> / <p>In dieser Dissertationsschrift geben wir zwei Konstruktionen Riemannscher Metriken auf Seiberg-Witten-Modulräumen an. Beide Metriken werden in natürlicher Weise durch die L2-Metrik des Konfiguartionsraumes induziert. Die Konstruktion der sogenannten Quotienten-L2-Metrik entspricht der durch Groisser und Parker angegebenen Konstruktion einer L2-Metrik auf Yang-Mills-Modulräumen. Zur Konstruktion einer Quotienten-Metrik auf dem Totalraum des Seiberg-Witten-Bündels führen wir die sogenannte reduzierte Eichgruppe ein. Wir zeigen, dass der Quotient des Prämodulraumes nach der reduzierten Eichgruppe als U(1)-Bündel isomorph ist zu dem Quotienten nach der basierten Eichgruppe. Dadurch trägt der Totalraum des Seiberg-Witten Bündels eine natürliche Quotienten-L2-Metrik, bzgl. derer die Bündelprojektion eine Riemannsche Submersion ist. Wir berechnen explizite Formeln für die Schnittrümmung des Modulraumes in Ausdrücken der Green-Operatoren des zu einem Monopol gehörigen elliptischen Komplexes. Ferner konstruieren wir eine Riemannsche Metrik auf dem Kobordismus zwischen Modulräumen zu verschiedenen Störungen. Die zweite Konstruktion einer Riemannschen Metrik auf Seiberg-Witten-Modulräumen benutzt eine kanonische globale Eichfixierung, vermöge derer der Totalraum des Seiberg-Witten-Bündels als endlich-dimensionale Untermannigfaltigkeit des Konfigurationsraumes dargestellt werden kann.</p>
<p>Wir betrachten speziell die Seiberg-Witten-Modulräume auf einfach zusammenhängenden Kähler-Mannigfaltigkeiten. Wir zeigen, dass der
Seiberg-Witten-Modulraum (falls nicht-leer) im irreduziblen Fall ein komplex projektiver Raum its und im reduziblen Fall aus einem einzelnen Punkt besteht.
Das Seiberg-Witten-Bündel läßt sich mit der Hopf-Faserung identifizieren. Die L2-Metrik des Modulraumes auf der komplex projektiven Fläche CP2 (mit einer speziellen Spin-C-Struktur) ist die Fubini-Study-Metrik; entsprechend sind die Metriken auf dem Totalraum Berger-Metriken. Wir zeigen, dass der Durchmesser des Modulraumes gegen 0 konvergiert, wenn die Störung sich dem reduziblen Fall nähert. Schließlich zeigen wir, dass die Quotienten-L2-Metrik auf dem Seiberg-Witten-Modulraum einer Kählerfläche eine Kähler-Metrik ist.</p>
|
Page generated in 0.0397 seconds