Spelling suggestions: "subject:"freiberg"" "subject:"scheibenberg""
11 |
Seiberg-Witten theory on 4-manifolds with periodic endsVeloso, Diogo 19 December 2014 (has links)
Dans cette thèse on prouve des résultats analytiques sur la théorie cohomotopique de Seiberg-Witten pour des 4-variétes Riemanniennes Spinc(4) a bouts périodiques, (X,g,τ). Nos résultats montrent, que sur certaines conditions techniques en (X, g, τ ),, cette nouvelle version est cohérente et mène a des invariants de Seiberg-Witten.Premièrement, en utilisant le critère de Taubes pour des operateurs périodiques dans des variétes a bouts périodiques, on montre que pour une 4-varieté Riemmanienne a bouts périodiques (X, g) vérifiant certaines conditions topologiques, le Laplacian ∆+ : L2(Λ2+) → L2(Λ2+) est un opérateur de Fredholm. On prouve une décomposition de type Hodge pour des 1-formes de X, a poids positif.Ensuite on prouve, en assumant certaines conditions topologiques et courbure scalaire non-negative sur les bouts, que l'opérateur de Dirac associé a une connection périodique (ASD a l'infini) est Fredholm.Dans la deuxième partie de la thèse on démontre un isomorphisme entre le groupe de cohomologie de de Rham Hd1R(X,iR), et le groupe harmonique intervenant dans la decomposition de Hodge des 1-formes de X a poids positif. On prouve l'existence de deux séquences exactes courtes liant le groupe de jauge de l'espace de modules de Seiberg-Witten et le groupe de cohomologie H1(X, 2πiZ).Dans la troisième partie on prouve les principaux résultats: la coercitivité de l'application de Seiberg-Witten et la compacité de l'espace de moduli pour une 4-varieté a bouts périodiques (X, g, τ ), vérifiant les conditions mentionnées plus haut.Finalment, utilisant la coercivité, on montre l'existence d'un invariant cohomotopique de type Seiberg- Witten type associé a (X, g, τ ). / In this thesis we prove analytic results about a cohomotopical Seiberg-Witten theory for a Riemannian, Spinc(4) 4-manifold with periodic ends, (X,g,τ) . Our results show that, under certain technical assumptions on (X, g, τ ), this new version is coher- ent and leads to Seiberg-Witten type invariants for this new class of 4-manifolds.First, using Taubes criteria for end-periodic operators on manifolds with periodic ends, we show that, for a Riemannian 4-manifold with periodic ends (X, g), verifying certain topological conditions, the Laplacian ∆+ : L2(Λ2+) → L2(Λ2+) is a Fredholm operator. This allows us to prove an important Hodge type decomposition for positively weighted Sobolev 1-forms on X.We prove, assuming non-negative scalar curvature on each end and certain technical topological conditions, that the associated Dirac operator associated with an end-periodic connection (which is ASD at infinity) is Fredholm.In the second part of the thesis we establish an isomorphism between be- tween the de Rham cohomology group, Hd1R(X,iR) (which is a topological in- variant of X) and the harmonic group intervening in the above Hodge type decomposition of the space of positively weighted 1-forms on X. We also prove two short exact sequences relating the gauge group of our Seiberg-Witten moduli problem and the cohomology group H1(X, 2πiZ).In the third part, we prove our main results: the coercivity of the Seiberg-Witten map and compactness of the moduli space for a 4-manifold with periodic ends (X,g,τ) verifying the above conditions.Finally, using our coercitivity property, we show that a Seiberg-Witten type cohomotopy invariant associated to (X, g, τ ) can be defined
|
12 |
Brane Constructions and BPS SpectraRastogi, Ashwin 08 October 2013 (has links)
The object of this work is to exploit various constructions of string theory and M-theory to yield new insights into supersymmetric theories in both four and three dimensions. In 4d, we extend work on Seiberg-Witten theory to study and compute BPS spectra of the class of complete N = 2 theories. The approach we take is based on the program of geometric engineering, in which 4d theories are constructed from compactifications of type IIB strings on Calabi-Yau manifolds. In this setup, the natural candidates for BPS states are D3 branes wrapped on supersymmetric 3-cycles in the Calabi-Yau. Our study makes use of the mathematical structure of quivers, whose representation theory encodes the notion of stability of BPS particles. Except for 11 exceptional cases, all complete theories can be constructed by wrapping stacks of two M5 branes on Riemann surfaces. By exploring the connection between quivers and M5 brane theories, we develop a powerful algorithm for computing BPS spectra, and give an in-depth study of its applications. In particular, we compute BPS spectra for all asymptotically free complete theories, as well as an infinite set of conformal \(SU(2)^k\) theories with certain matter content. From here, we go on to apply the insight gained from our 4d study to 3d gauge theories. We consider the analog of the M5 brane construction in the case of 3d N = 2 theories: pairs of M5 branes wrapped on a 3-manifold. Using the ansantz of R-flow, we study 3-manifolds consisting of Riemann surfaces fibered over R. When the construction is non-singular, the resulting IR physics is described by a free abelian Chern-Simons theory. The mathematical data of a tangle captures the data of the gauge theory, and the Reidemeister equivalances on tangles correspond to dualities of physical descriptions. To obtain interacting matter, we allow singularities in the construction. By extending the tangle description to these singular cases, we find a set of generalized Reidemeister moves that capture non-trivial mirror symmetries of 3d gauge theories. These results give a geometric origin to these well-known 3d dualities. / Physics
|
13 |
Conformal Properties of Generalized Dirac OperatorThakre, Varun 05 June 2013 (has links)
No description available.
|
14 |
Indices for supersymmetric quantum field theories in four dimensionsEhrhardt, Mathieu January 2012 (has links)
In this thesis, we investigate four dimensional supersymmetric indices. The motivation for studying such objects lies in the physics of Seiberg's electric-magnetic duality in supersymmetric field theories. In the first chapter, we first define the index and underline its cohomological nature, before giving a first computation based on representation theory of free superconformal field theories. After listing all representations of the superconformal algebra based on shortening conditions, we compute the associated Verma module characters, from which we can extract the index in the appropriate limit. This approach only provides us with the free field theory limit for the index and does not account for the values of the $R$-charges away from free field theories. To circumvent this limitation, we then study a theory on $\mathbb{R}\times S^3$ which allows for a computation of the superconformal index for multiplets with non-canonical $R$-charges. We expand the fields in harmonics and canonically quantise the theory to analyse the set of quantum states, identifying the ones that contribute to the index. To go beyond free field theory on $\mathbb{R}\times S^3$, we then use the localisation principle to compute the index exactly in an interacting theory, regardless of the value of the coupling constant. We then show that the index is independent of a particular geometric deformation of the underlying manifold, by squashing the sphere. In the final chapter, we show how the matching of the index can be used in the large $N$ limit to identify the $R$-charges for all fields of the electric-magnetic theories of the canonical Seiberg duality. We then conclude by outlining potential further work.
|
15 |
Instanton Counting, Matrix Models, and CharactersTamagni, Spencer 01 January 2022 (has links)
In this thesis we study symmetries of quantum field theory visible only at the non-perturbative level, which arise from large deformations of the integration contour in the path integral. We exposit the recently-developed theory of qq-characters that organizes such symmetries in the case of N = 2 supersymmetric gauge theories in four dimensions. We sketch the physical origin of such observables from intersecting branes in string theory, and the mathematical origin as certainequivariant integrals over Nakajima quiver varieties. We explain some of the main applications, including the derivation of Seiberg-Witten geometry for quiver gauge theories and the relations to quantum integrable systems.
|
16 |
Electric-Magnetic Duality-Symmetric Effective Actions in Harmonic SuperspaceAhmadain, Amr 10 October 2014 (has links)
No description available.
|
17 |
On the Classification of Rank-1 Four-dimensional N=2 Superconformal Field Theories by Seiberg-Witten GeometryLu, Yongchao 30 October 2017 (has links)
No description available.
|
18 |
Permuting actions, moment maps and the generalized Seiberg-Witten equationsCallies, Martin 09 February 2016 (has links)
No description available.
|
19 |
Generalized Seiberg-Witten equations and hyperKähler geometry / Verallgemeinerte Seiberg-Witten Gleichungen und hyperKählersche GeometrieHaydys, Andriy 09 February 2006 (has links)
No description available.
|
20 |
Quaterninic Kähler manifolds, constrained instantons, and the magic squareWissanji, Alisha January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
Page generated in 0.0414 seconds