• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 2
  • Tagged with
  • 33
  • 17
  • 16
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Observation of dynamic processes with seismic interferometry

Gassenmeier, Martina 19 May 2016 (has links) (PDF)
In this study, seismic interferometry is used to analyze dynamic processes in the Earth’s shallow subsurface caused by environmental processes and ground shaking. In the first part of the thesis, the feasibility of a passive monitoring with ambient seismic noise at the pilot site for CO2 injection in Ketzin is investigated. Monitoring the expansion of the CO2 plume is essential for the characterization of the reservoir as well as the detection of potential leakage. From June 2008 until August 2013, more than 67000 tons of CO2 were injected into a saline aquifer at a depth of about 650 m. Passive seismic data recorded at a seismic network around the injection site was cross-correlated in a frequency range of 0.5-4.5 Hz over a period of 4 years. The frequency band of 0.5-0.9 Hz, in which surface waves exhibit a high sensitivity at the depth of the reservoir, is not suitable for monitoring purposes as it is only weakly excited. In a frequency range of 1.5-3 Hz, periodic velocity variations with a period of approximately one year are found that cannot be caused by the CO2 injection. The prominent propagation direction of the noise wave field indicates a wind farm as the dominant source providing the temporally stable noise field. This spacial stability excludes variations of the noise source distribution as a spurious cause of velocity variations. Based on an amplitude decrease associated with time windows towards later parts of the coda, the variations must be generated in the shallow subsurface. A comparison to groundwater level data reveals a direct correlation between depth of the groundwater level and the seismic velocity. The influence of ground frost on the seismic velocities is documented by a sharp increase of velocity when the maximum daily temperature stays below 0 C. Although the observed periodic changes and the changes due to ground frost affect only the shallow subsurface, they mask potential signals of material changes from the reservoir depths. To investigate temporal seismic velocity changes due to earthquake-related processes and environmental forcing in northern Chile, 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) are analyzed. By autocorrelating the ambient seismic noise field, approximations of the Green’s functions are retrieved and velocity changes are measured with Coda Wave Interferometry. At station PATCX, seasonal changes of seismic velocity caused by thermal stress as well as transient velocity reductions are observed in the frequency range of 4-6 Hz. Sudden velocity drops occur at times of mostly earthquake-induced ground describing the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. The shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over one day, which is the temporal resolution of the velocity measurements. In the model, the amplitude of the velocity reduction as well as the recovery time are proportional to the strength of the excitation. The increase of coseismic velocity change and recovery time with increasing excitation is confirmed by laboratory tests with ultrasound. Despite having only two free scaling parameters, the model fits the data of the shaking-induced velocity variation in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before the measurement period. A clear relationship between ground shaking and induced velocity reductions is not visible at other stations. The outstanding sensitivity of PATCX to ground shaking and thermal stress can be attributed to the special geological setting of the station, where the subsurface material consists of a relatively loose conglomerate with high pore volume leading to stronger nonlinearity compared to the other IPOC stations. / In dieser Studie werden mit Hilfe von seismischer Interferometrie kleinste dynamische Prozesse in der Erdkruste beobachtet, welche beispielsweise durch umweltbedingte oder anthropogene Einflüsse sowie Bodenerschütterungen hervorgerufen werden können. Im ersten Teil der Arbeit werden Änderungen in der seismischen Geschwindigkeit am Pilotstandort für CO2-Speicherung in Ketzin untersucht. In einer Tiefe von 650m wurden dort zwischen Juni 2008 und August 2013 über 67000 Tonnen CO2 eingelagert. In einem Frequenzbereich vom 0,05-4,5 Hz wurden Kreuzkorrelationen des seismischen Hintergrundrauschens an einem kleinräumigen Netzwerk über einen Zeitraum von 4 Jahren berechnet. Der Frequenzbereich zwischen 0,5 und 0,9 Hz weist eine hohe Sensitivität von Oberflächenwellen in der Tiefe des Reservoirs auf, ist aber nur sehr schwach angeregt und eignet sich deswegen nicht für die Analyse. In einem Frequenzbereich von 1,5-3 Hz zeigen sich periodische Geschwindigkeitsänderungen mit einer Periode von einem Jahr, welche nicht durch die Einlagerung von CO2 erzeugt werden können. Eine Analyse des seismischen Hintergrundrauschens zeigt, dass dieses über den gesamten Zeitraum hinweg hauptsächlich aus der Richtung eines Windparks kommt. Durch die Stabilität des Wellenfeldes können Änderungen in den Quellpositionen, welche sich in scheinbaren Geschwindigkeitsänderungen zeigen können, ausgeschlossen werden. Eine Amplitudenabnahme der Geschwindigkeitsänderungen hin zu späteren Zeitfenstern in der Coda lässt auf oberflächennahe Prozesse als Ursache schließen. Ein Vergleich zwischen den jährlichen Geschwindigkeitsänderungen mit Schwankungen im Grundwasserspiegel zeigt eine direkte Korrelation. Ein sprunghafter Anstieg in der Geschwindigkeit zeigt sich im Winter, wenn die Tageshöchsttemperaturen unter den Gefrierpunkt sinken und der Boden zufriert. Obwohl Bodenfrost und Änderungen im Grundwasserspiegel nur einen sehr oberflächennahen Bereich betreffen, so überdecken sie dennoch mögliche Signale durch die Einlagerung von CO2. Im zweiten Teil der Arbeit werden Geschwindigkeitsänderungen in Nordchile untersucht, welche durch erdbebeninduzierte Prozesse und umweltbedingte Einflüsse hervorgerufen werden. Dazu wurden über einen Zeitraum von 8 Jahren Autokorrelationen des seismischen Hintergrundrauschens des IPOC Netzwerkes (Integrated Plate Boundary Observatory Chile) berechnet und mit seismischer Interferometrie ausgewertet. An der Station PATCX können in einem Frequenzbereich von 4-6 Hz periodische Geschwindigkeitsänderungen beobachet werden, welche durch thermisch induzierte Dehnung hervorgerufen werden. Außerdem treten transiente Geschwindigkeitsabnamen nach Bodenerschütterungen auf, welche hauptsächlich von Erdbeben verursacht werden. Die seismische Geschwindigkeit kehrt daraufhin langsam wieder auf ihr vorheriges Niveau zurück. Für die Geschwindigkeitsänderungen wurde ein empirisches Modell entwickelt, welches auf Messungen der lokalen Bodenerschütterung basiert. Dabei wird angenommen, dass nicht nur große erdbebeninduzierte, sondern auch kleinste Bodenerschütterungen einen Abfall der Geschwindigkeit erzeugen, welche wiederum innerhalb kürzester Zeit durch Heilung in den Gleichgewichtszustand zurückkehrt. Dabei summieren sich die Effekte durch die Bodenerschütterungen mit der Zeit auf und werden am besten mit dem Integral der lokalen Bodenbeschleunigung über die Messwerte eines Tages beschrieben. Die Diskretisierung von einem Tag entspricht der zeitlichen Auflösung in der Messung der Geschwindigkeitsänderungen. Sowohl die Amplitude der Geschwindigkeitsabnahme als auch die Zeit bis der Gleichgewichtszustand wieder erreicht ist (Heilungszeit) werden im Modell als proportinal zur Größe der Anregung angenommen. Eine Korrelation der Heilungszeit und der Amplitude der koseismischen Geschwindigkeitsabnahme mit der Größe der Anregung konnte mit Hilfe von Laboruntersuchungen mit Ultraschall bestätigt werden. Mit nur zwei Parametern beschreibt das Modell die transienten Geschwindigkeitsänderungen in bemerkenswerter Genauigkeit. Desweiteren beinhaltet das Modell einen linearen Verlauf in den Geschwindigkeitsänderungen, welcher vermutlich durch einen Heilungsprozess hervorgerufen wird, der auf ein oder mehrere Erdbeben vor dem Messzeitraum folgte. Eine Beziehung zwischen Bodenerschütterung und Geschwindigkeitsänderung ist an anderen Stationen des IPOC Netzwerkes nicht erkennbar. Die herausragende Sensitivität von PATCX im Hinblick auf Bodenerschütterung und thermische Dehnung kann den speziellen geologischen Gegebenheiten an der Station zugeschrieben werden. Bei dem dort vorliegenden Material handelt es sich um ein relativ loses Konglomerat mit großem Porenvolumen, welches ein starkes nichtlineares Verhalten aufweist, was an anderen IPOC Stationen nicht zu erwarten ist.
12

Observation of dynamic processes with seismic interferometry

Gassenmeier, Martina 14 April 2016 (has links)
In this study, seismic interferometry is used to analyze dynamic processes in the Earth’s shallow subsurface caused by environmental processes and ground shaking. In the first part of the thesis, the feasibility of a passive monitoring with ambient seismic noise at the pilot site for CO2 injection in Ketzin is investigated. Monitoring the expansion of the CO2 plume is essential for the characterization of the reservoir as well as the detection of potential leakage. From June 2008 until August 2013, more than 67000 tons of CO2 were injected into a saline aquifer at a depth of about 650 m. Passive seismic data recorded at a seismic network around the injection site was cross-correlated in a frequency range of 0.5-4.5 Hz over a period of 4 years. The frequency band of 0.5-0.9 Hz, in which surface waves exhibit a high sensitivity at the depth of the reservoir, is not suitable for monitoring purposes as it is only weakly excited. In a frequency range of 1.5-3 Hz, periodic velocity variations with a period of approximately one year are found that cannot be caused by the CO2 injection. The prominent propagation direction of the noise wave field indicates a wind farm as the dominant source providing the temporally stable noise field. This spacial stability excludes variations of the noise source distribution as a spurious cause of velocity variations. Based on an amplitude decrease associated with time windows towards later parts of the coda, the variations must be generated in the shallow subsurface. A comparison to groundwater level data reveals a direct correlation between depth of the groundwater level and the seismic velocity. The influence of ground frost on the seismic velocities is documented by a sharp increase of velocity when the maximum daily temperature stays below 0 C. Although the observed periodic changes and the changes due to ground frost affect only the shallow subsurface, they mask potential signals of material changes from the reservoir depths. To investigate temporal seismic velocity changes due to earthquake-related processes and environmental forcing in northern Chile, 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) are analyzed. By autocorrelating the ambient seismic noise field, approximations of the Green’s functions are retrieved and velocity changes are measured with Coda Wave Interferometry. At station PATCX, seasonal changes of seismic velocity caused by thermal stress as well as transient velocity reductions are observed in the frequency range of 4-6 Hz. Sudden velocity drops occur at times of mostly earthquake-induced ground describing the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. The shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over one day, which is the temporal resolution of the velocity measurements. In the model, the amplitude of the velocity reduction as well as the recovery time are proportional to the strength of the excitation. The increase of coseismic velocity change and recovery time with increasing excitation is confirmed by laboratory tests with ultrasound. Despite having only two free scaling parameters, the model fits the data of the shaking-induced velocity variation in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before the measurement period. A clear relationship between ground shaking and induced velocity reductions is not visible at other stations. The outstanding sensitivity of PATCX to ground shaking and thermal stress can be attributed to the special geological setting of the station, where the subsurface material consists of a relatively loose conglomerate with high pore volume leading to stronger nonlinearity compared to the other IPOC stations. / In dieser Studie werden mit Hilfe von seismischer Interferometrie kleinste dynamische Prozesse in der Erdkruste beobachtet, welche beispielsweise durch umweltbedingte oder anthropogene Einflüsse sowie Bodenerschütterungen hervorgerufen werden können. Im ersten Teil der Arbeit werden Änderungen in der seismischen Geschwindigkeit am Pilotstandort für CO2-Speicherung in Ketzin untersucht. In einer Tiefe von 650m wurden dort zwischen Juni 2008 und August 2013 über 67000 Tonnen CO2 eingelagert. In einem Frequenzbereich vom 0,05-4,5 Hz wurden Kreuzkorrelationen des seismischen Hintergrundrauschens an einem kleinräumigen Netzwerk über einen Zeitraum von 4 Jahren berechnet. Der Frequenzbereich zwischen 0,5 und 0,9 Hz weist eine hohe Sensitivität von Oberflächenwellen in der Tiefe des Reservoirs auf, ist aber nur sehr schwach angeregt und eignet sich deswegen nicht für die Analyse. In einem Frequenzbereich von 1,5-3 Hz zeigen sich periodische Geschwindigkeitsänderungen mit einer Periode von einem Jahr, welche nicht durch die Einlagerung von CO2 erzeugt werden können. Eine Analyse des seismischen Hintergrundrauschens zeigt, dass dieses über den gesamten Zeitraum hinweg hauptsächlich aus der Richtung eines Windparks kommt. Durch die Stabilität des Wellenfeldes können Änderungen in den Quellpositionen, welche sich in scheinbaren Geschwindigkeitsänderungen zeigen können, ausgeschlossen werden. Eine Amplitudenabnahme der Geschwindigkeitsänderungen hin zu späteren Zeitfenstern in der Coda lässt auf oberflächennahe Prozesse als Ursache schließen. Ein Vergleich zwischen den jährlichen Geschwindigkeitsänderungen mit Schwankungen im Grundwasserspiegel zeigt eine direkte Korrelation. Ein sprunghafter Anstieg in der Geschwindigkeit zeigt sich im Winter, wenn die Tageshöchsttemperaturen unter den Gefrierpunkt sinken und der Boden zufriert. Obwohl Bodenfrost und Änderungen im Grundwasserspiegel nur einen sehr oberflächennahen Bereich betreffen, so überdecken sie dennoch mögliche Signale durch die Einlagerung von CO2. Im zweiten Teil der Arbeit werden Geschwindigkeitsänderungen in Nordchile untersucht, welche durch erdbebeninduzierte Prozesse und umweltbedingte Einflüsse hervorgerufen werden. Dazu wurden über einen Zeitraum von 8 Jahren Autokorrelationen des seismischen Hintergrundrauschens des IPOC Netzwerkes (Integrated Plate Boundary Observatory Chile) berechnet und mit seismischer Interferometrie ausgewertet. An der Station PATCX können in einem Frequenzbereich von 4-6 Hz periodische Geschwindigkeitsänderungen beobachet werden, welche durch thermisch induzierte Dehnung hervorgerufen werden. Außerdem treten transiente Geschwindigkeitsabnamen nach Bodenerschütterungen auf, welche hauptsächlich von Erdbeben verursacht werden. Die seismische Geschwindigkeit kehrt daraufhin langsam wieder auf ihr vorheriges Niveau zurück. Für die Geschwindigkeitsänderungen wurde ein empirisches Modell entwickelt, welches auf Messungen der lokalen Bodenerschütterung basiert. Dabei wird angenommen, dass nicht nur große erdbebeninduzierte, sondern auch kleinste Bodenerschütterungen einen Abfall der Geschwindigkeit erzeugen, welche wiederum innerhalb kürzester Zeit durch Heilung in den Gleichgewichtszustand zurückkehrt. Dabei summieren sich die Effekte durch die Bodenerschütterungen mit der Zeit auf und werden am besten mit dem Integral der lokalen Bodenbeschleunigung über die Messwerte eines Tages beschrieben. Die Diskretisierung von einem Tag entspricht der zeitlichen Auflösung in der Messung der Geschwindigkeitsänderungen. Sowohl die Amplitude der Geschwindigkeitsabnahme als auch die Zeit bis der Gleichgewichtszustand wieder erreicht ist (Heilungszeit) werden im Modell als proportinal zur Größe der Anregung angenommen. Eine Korrelation der Heilungszeit und der Amplitude der koseismischen Geschwindigkeitsabnahme mit der Größe der Anregung konnte mit Hilfe von Laboruntersuchungen mit Ultraschall bestätigt werden. Mit nur zwei Parametern beschreibt das Modell die transienten Geschwindigkeitsänderungen in bemerkenswerter Genauigkeit. Desweiteren beinhaltet das Modell einen linearen Verlauf in den Geschwindigkeitsänderungen, welcher vermutlich durch einen Heilungsprozess hervorgerufen wird, der auf ein oder mehrere Erdbeben vor dem Messzeitraum folgte. Eine Beziehung zwischen Bodenerschütterung und Geschwindigkeitsänderung ist an anderen Stationen des IPOC Netzwerkes nicht erkennbar. Die herausragende Sensitivität von PATCX im Hinblick auf Bodenerschütterung und thermische Dehnung kann den speziellen geologischen Gegebenheiten an der Station zugeschrieben werden. Bei dem dort vorliegenden Material handelt es sich um ein relativ loses Konglomerat mit großem Porenvolumen, welches ein starkes nichtlineares Verhalten aufweist, was an anderen IPOC Stationen nicht zu erwarten ist.
13

Development of techniques for earthquake microzonation studies in different urban environment

Strollo, Angelo January 2010 (has links)
The proliferation of megacities in many developing countries, and their location in areas where they are exposed to a high risk from large earthquakes, coupled with a lack of preparation, demonstrates the requirement for improved capabilities in hazard assessment, as well as the rapid adjustment and development of land-use planning. In particular, within the context of seismic hazard assessment, the evaluation of local site effects and their influence on the spatial distribution of ground shaking generated by an earthquake plays an important role. It follows that the carrying out of earthquake microzonation studies, which aim at identify areas within the urban environment that are expected to respond in a similar way to a seismic event, are essential to the reliable risk assessment of large urban areas. Considering the rate at which many large towns in developing countries that are prone to large earthquakes are growing, their seismic microzonation has become mandatory. Such activities are challenging and techniques suitable for identifying site effects within such contexts are needed. In this dissertation, I develop techniques for investigating large-scale urban environments that aim at being non-invasive, cost-effective and quickly deployable. These peculiarities allow one to investigate large areas over a relative short time frame, with a spatial sampling resolution sufficient to provide reliable microzonation. Although there is a negative trade-off between the completeness of available information and extent of the investigated area, I attempt to mitigate this limitation by combining two, what I term layers, of information: in the first layer, the site effects at a few calibration points are well constrained by analyzing earthquake data or using other geophysical information (e.g., shear-wave velocity profiles); in the second layer, the site effects over a larger areal coverage are estimated by means of single-station noise measurements. The microzonation is performed in terms of problem-dependent quantities, by considering a proxy suitable to link information from the first layer to the second one. In order to define the microzonation approach proposed in this work, different methods for estimating site effects have been combined and tested in Potenza (Italy), where a considerable amount of data was available. In particular, the horizontal-to-vertical spectral ratio computed for seismic noise recorded at different sites has been used as a proxy to combine the two levels of information together and to create a microzonation map in terms of spectral intensity ratio (SIR). In the next step, I applied this two-layer approach to Istanbul (Turkey) and Bishkek (Kyrgyzstan). A similar hybrid approach, i.e., combining earthquake and noise data, has been used for the microzonation of these two different urban environments. For both cities, after having calibrated the fundamental frequencies of resonance estimated from seismic noise with those obtained by analysing earthquakes (first layer), a fundamental frequency map has been computed using the noise measurements carried out within the town (second layer). By applying this new approach, maps of the fundamental frequency of resonance for Istanbul and Bishkek have been published for the first time. In parallel, a microzonation map in terms of SIR has been incorporated into a risk scenario for the Potenza test site by means of a dedicated regression between spectral intensity (SI) and macroseismic intensity (EMS). The scenario study confirms the importance of site effects within the risk chain. In fact, their introduction into the scenario led to an increase of about 50% in estimates of the number of buildings that would be partially or totally collapsed. Last, but not least, considering that the approach developed and applied in this work is based on measurements of seismic noise, their reliability has been assessed. A theoretical model describing the self-noise curves of different instruments usually adopted in microzonation studies (e.g., those used in Potenza, Istanbul and Bishkek) have been considered and compared with empirical data recorded in Cologne (Germany) and Gubbio (Italy). The results show that, depending on the geological and environmental conditions, the instrumental noise could severely bias the results obtained by recording and analysing ambient noise. Therefore, in this work I also provide some guidelines for measuring seismic noise. / Aufgrund des enormen Wachstums neuer Megastädte und deren Vordringen in gefährdete Gebiete auf der einen Seite sowie der mangelnden Erdbebenvorsorge in vielen Entwicklungsländern auf der anderen Seite sind verbesserte Verfahren für die Beurteilung der Gefährdung sowie eine rasche Umsetzung bei der Raumplanung erforderlich. Im Rahmen der seismischen Gefährdungsabschätzung spielt insbesondere die Beurteilung lokaler Standorteffekte und deren Einfluss auf die durch ein Erdbeben verursachte räumliche Verteilung der Bodenerschütterung eine wichtige Rolle. Es ist daher unabdingbar, mittels seismischer Mikrozonierungsstudien diejenigen Bereiche innerhalb dicht besiedelter Gebiete zu ermitteln, in denen ein ähnliches Verhalten im Falle seismischer Anregung erwartet wird, um daraus eine zuverlässige Basis bei der Risikoabschätzung großer städtischer Gebiete zu erhalten. Aufgrund des schnellen Wachstums vieler Großstädte in Entwicklungsländern ist eine seismische Mikrozonierung zwingend erforderlich, stellt aber auch eine große Herausforderung dar; insbesondere müssen Verfahren verfügbar sein, mit deren Hilfe rasch eine Abschätzung der Standorteffekte durchgeführt werden kann. In der vorliegenden Arbeit entwickle ich daher Verfahren für die Untersuchung in Großstädten, die darauf abzielen, nicht-invasiv, kostengünstig und schnell durchführbar zu sein. Damit lassen sich innerhalb eines relativ kurzen Zeitraums große Gebiete untersuchen, falls der räumlichen Abstand zwischen den Messpunkten klein genug ist, um eine zuverlässige Mikrozonierung zu gewährleisten. Obwohl es eine gegenläufige Tendenz zwischen der Vollständigkeit aller Informationen und der Größe des untersuchten Gebiets gibt, versuche ich, diese Einschränkung durch Verknüpfung zweier Informationsebenen zu umgehen: In der ersten Ebene werden die Standorteffekte für einige Kalibrierungspunkte durch die Analyse von Erdbeben oder mittels anderer geophysikalischer Datensätze (z.B. Scherwellengeschwindigkeitsprofile) bestmöglich abgeschätzt, in der zweiten Ebene werden die Standorteffekte durch Einzelstationsmessungen des seismischen Rauschens für ein größeres Gebiet bestimmt. Die Mikrozonierung erfolgt hierbei mittels spezifischer, fallabhängiger Parameter unter Berücksichtigung eines geeigneten Anknüpfungspunktes zwischen den beiden Informationensebenen. Um diesen Ansatz der Mikrozonierung, der in dieser Arbeit verfolgt wurde, zu präzisieren, wurden in Potenza (Italien), wo eine beträchtliche Menge an Daten verfügbar war, verschiedene Verfahren untersucht. Insbesondere kann das Spektralverhältnis zwischen den horizontalen und vertikalen Seismometerkomponenten, welche für das seismische Rauschen an mehreren Orten aufgenommen wurde, als eine erste Näherung für die relative Verstärkung der Bodenbewegung verwendet werden, um darauf aufbauend die beiden Informationsebenen zu verknüpfen und eine Mikrozonierung hinsichtlich des Verhältnisses der spektralen Intensität durchzuführen. Anschließend führte ich diesen Zwei-Ebenen-Ansatz auch für Istanbul (Türkei) und Bischkek (Kirgisistan) durch. Für die Mikrozonierung dieser beiden Städte habe ich denselben Hybridansatz, der Daten von Erdbeben und von seismischem Rauschen verbindet, verwendet. Für beide Städte wurde nach Gegenüberstellung der Resonanzfrequenz des Untergrunds, die zum einen mit Hilfe des seismischen Rauschens, zum anderen durch Analyse von Erdbebendaten bestimmt worden ist (erste Ebene), eine Karte der Resonanzfrequenz unter Verwendung weiterer Messungen des seismischen Rauschens innerhalb des Stadtgebiets erstellt (zweite Ebene). Durch die Anwendung dieses neuen Ansatzes sind vor kurzem zum ersten Mal auch Karten für die Resonanzfrequenz des Untergrunds für Istanbul und Bischkek veröffentlicht worden. Parallel dazu wurde für das Testgebiet in Potenza eine auf dem spektralen Intensitätsverhältnis (SIR) basierende Mikrozonierungskarte in ein Risikoszenario mittels der Regression zwischen SIR und makroseismischer Intensität (EMS) integriert. Diese Szenariostudie bestätigt die Bedeutung von Standorteffekten innerhalb der Risikokette; insbesondere führt deren Einbeziehung in das Szenario zu einem Anstieg von etwa 50% bei der Zahl der Gebäude, für die ein teilweiser oder gar vollständiger Zusammenbruch erwartet werden kann. Abschließend wurde der im Rahmen dieser Arbeit entwickelte und angewandte Ansatz auf seine Zuverlässigkeit geprüft. Ein theoretisches Modell, das zur Beschreibung des Eigenrauschens verschiedener Instrumente, die in der Regel in Mikrozonierungsstudien (z. B. in Potenza, Istanbul und Bischkek) zum Einsatz kommen, wurde untersucht, und die Ergebnisse wurden mit Daten verglichen, die vorher bereits in Köln (Deutschland) und Gubbio (Italien) aufgenommen worden waren. Die Ergebnisse zeigen, dass abhängig von den geologischen und umgebenden Bedingungen das Eigenrauschen der Geräte die Ergebnisse bei der Analyse des seismischen Rauschens stark verzerren kann. Deshalb liefere ich in dieser Arbeit auch einige Leitlinien für die Durchführung von Messungen des seismischen Rauschens.
14

A fault-controlled geothermal system in Tarutung (North Sumatra, Indonesia)investigated by seismological analysis

Muksin, Umar January 2014 (has links)
The seismic structure (Vp, Vp/Vs, and Qp anomalies) contributes to the physical properties and the lithology of rocks and possible fluid distribution in the region. The Vp model images the geometry of the Tarutung and the Sarulla basins. Both basins have a depth of around 2.0 km. High Vp/Vs and high attenuation (low Qp) anomalies are observed along the Sarulla graben associated with a weak zone caused by volcanic activities along the graben. Low Vp/Vs and low conductivity anomalies are found in the west of the Tarutung basin. This anomaly is interpreted as dry, compact, and rigid granitic rock in the region as also found by geological observations. Low Vp, high Vp/Vs and low Qp anomalies are found at the east of the Tarutung basin which appear to be associated with the three big geothermal manifestations in Sipoholon, Hutabarat, and Panabungan area. These anomalies are connected with high Vp/Vs and low Qp anomalies below the Tarutung basin at depth of around 3 - 10 km. This suggests that these geothermal manifestations are fed by the same source of the hot fluid below the Tarutung basin. The hot fluids from below the Tarutung basin propagate to the more dilatational and more permeable zone in the northeast. Granite found in the west of the Tarutung basin could also be abundant underneath the basin at a certain depth so that it prevents the hot fluid to be transported directly to the Tarutung basin. High seismic attenuation and low Vp/Vs anomalies are found in the southwest of the Tarutung basin below the Martimbang volcano. These anomalies are associated with hot rock below the volcano without or with less amount of partial melting. There is no indication that the volcano controls the geothermal system around the Tarutung basin. The geothermal resources around the Tarutung basin is a fault-controlled system as a result of deep circulation of fluids. Outside of the basin, the seismicity delineation and the focal mechanism correlate with the shape and the characteristics of the strike-slip Sumatran fault. Within the Tarutung basin, the seismicity is distributed more broadly which coincides with the margin of the basin. An extensional duplex system in the Tarutung basin is derived from the seismicity and focal mechanism analysis which is also consistent with the geological observations. The vertical distribution of the seismicity suggests the presence of a negative flower structure within the Tarutung basin. / Indonesien zählt zu den weltweit führenden Ländern bei der Nutzung von geothermischer Energie. Die geothermischen Energiequellen sind im Wesentlichen an den aktiven Vulkanismus gebunden, der durch die Prozesse an der indonesischen Subduktionszone verursacht wird. Darüber hinaus sind geotektonische Strukturen wie beispielsweise die Sumatra-Störung als verstärkende Faktoren für das geothermische Potenzial von Bedeutung. Bei der geophysikalischen Erkundung der indonesischen Geothermie-Ressourcen konzentrierte man sich bisher vor allem auf die Magnetotellurik. Passive Seismologie wurde dahingegen ausschließlich für die Überwachung von im Betrieb befindlichen Geothermie-Anlagen verwendet. Jüngste Untersuchungungen z.B. in Island und in den USA haben jedoch gezeigt, dass seismologische Verfahren bereits in der Erkundungsphase wichtige Informationen zu den physikalischen Eigenschaften, zum Spannungsfeld und zu möglichen Fluid- und Wärmetransportwegen liefern können. In der vorgelegten Doktorarbeit werden verschiedene moderne Methoden der passiven Seismologie verwendet, um beispielhaft ein neues, von der indonesischen Regierung für zukünftige geothermische Energiegewinnung ausgewiesenes Gebiet im nördlichen Teil Sumatras (Indonesien) zu erkunden. Die konkreten Ziele der Untersuchungen umfassten (1) die Ableitung von 3D Strukturmodellen der P- und S-Wellen Geschwindigkeiten (Parameter Vp und Vs), (2) die Bestimmung der Absorptionseigenschaften (Parameter Qp), und (3) die Kartierung und Charakterisierung von Störungssystemen auf der Grundlage der Seismizitätsverteilung und der Herdflächenlösungen. Für diese Zwecke habe ich zusammen mit Kollegen ein seismologisches Netzwerk in Tarutung (Sumatra) aufgebaut und über einen Zeitraum von 10 Monaten (Mai 2011 – Februar 2012) betrieben. Insgesamt wurden hierbei 42 Stationen (jeweils ausgestattet mit EDL-Datenlogger, 3-Komponenten, 1 Hz Seismometer) über eine Fläche von etwa 35 x 35 km verteilt. Mit dem Netzwerk wurden im gesamten Zeitraum 2568 lokale Erdbeben registriert. Die integrierte Betrachtung der Ergebnisse aus den verschiedenen Teilstudien (Tomographie, Erdbebenverteilung) erlaubt neue Einblicke in die generelle geologische Stukturierung sowie eine Eingrenzung von Bereichen mit einem erhöhten geothermischen Potenzial. Das tomographische Vp-Modell ermöglicht eine Bestimmung der Geometrie von Sedimentbecken entlang der Sumatra-Störung. Für die Geothermie besonders interessant ist der Bereich nordwestlich des Tarutung-Beckens. Die dort abgebildeten Anomalien (erhöhtes Vp/Vs, geringes Qp) habe ich als mögliche Aufstiegswege von warmen Fluiden interpretiert. Die scheinbar asymetrische Verteilung der Anomalien wird hierbei im Zusammenhang mit der Seismizitätsverteilung, der Geometrie der Beben-Bruchflächen, sowie struktur-geologischen Modellvorstellungen diskutiert. Damit werden wesentliche Informationen für die Planung einer zukünftigen geothermischen Anlage bereitgestellt.
15

Vertical Seismic Profiling in the Krafla Geothermal Field, NE-Iceland / Seismische Vertikalprofilierung im Krafla Geothermiefeld, NO-Island

Kästner, Felix 03 January 2017 (has links) (PDF)
A VSP test experiment at the high temperature geothermal field Krafla in NE-Iceland has been carried out. In two boreholes a zero-, far-, and multi-offset VSP were applied to assess the applicability of VSP as a method for delineating subsurface structures like magmatic bodies, zones of supercritical fluids, superheated steam, and high permeability in volcanic geothermal fields. Because of high well temperatures (>150°C) and high attenuating surface layers, challenging field preparations were necessary. Three-component seismic data were recorded with a sufficient signal-to-noise ratio and dominant signal frequencies around 20 Hz and 40 Hz, down to 2200 m depth, for air gun and explosive sources, respectively. As a result, the data provide a good basis for several processing and imaging techniques. As part of this Master\'s thesis, standard and novel processing techniques of a subset of the data (zero and far-offset VSP in a single well) have been tested and show promising results in accordance with the lithology from well data. Besides velocity profiles and a corridor stack for both P- and S-waves were determined, a 3D Kirchhoff depth migration and Fresnel volume migration have been applied and tested. Already for a single source location, results show structures in the vicinity and below the well, and it can be assumed that further interpretation and data integration will provide a great potential in addition to hitherto applied teleseismic and potential methods. Especially, for geothermal sites it has been shown, that VSP can be applied and provide information of geometries where dipping faults and fracture zones are expected. The research leading to these results has received funding from the European Community\'s Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).
16

Heterogeneities in the D” layer beneath the southwestern Pacific inferred from anomalous P- and S-waves

Kito, Tadashi January 2003 (has links)
Die P- und S-Wellen-Geschwindigkeitsstruktur der D” Schicht unter dem südwestlichen Pazifik wurde mittels kurzperiodischer Daten von 12 Tiefbeben in der Tonga-Fiji-Region untersucht, die vom J-Array und Hi-net-Array in Japan registriert wurden. Es wurde für Punktstreuer und ebene Schichten migriert, um schwache Signale zu extrahieren, die an relativ kleinräumigen Heterogenitäten des unteren Mantels entstehen. Um eine höhere Auflösung zu erzielen, wurde die Double Array-Methode (DAM) verwendet, die Empfängerarray und Quellarray gleichzeitig nutzt. Hierbei ist auch das Phase-Weighted Stack-Verfahren angewendet worden, um inkohärentes Rauschen zu reduzieren und somit schwache kohärente Signale aus dem unteren Mantel aufzulösen. Das Ergebnis der Ebenen-Schichten-Methode (RWB) zeigt, dass sich in der D”-Schicht negative Geschwindigkeitsdiskontinuitäten mit P-Wellen Geschwindigkeitskontrasten von höchstens –1 % in den Tiefen von 2520 km und 2650 km befinden. Zusätzlich befindet sich eine positive Geschwindigkeitsdiskontinuitäten in der Tiefe von 2800 km. Bei den S Wellen treten Geschwindigkeitsdiskontinuitäten in einer Tiefe von etwa 2550 km und 2850 km auf. Die scheinbare Verschiebung (50 km) der S-Wellen-Geschwindigkeitsdiskontinuität in der Tiefe von 2850 km deutet darauf hin, daß die S-Wellen-Geschwindigkeitsreduktion im unteren Mantel 2-3 mal stärker ist als die P- Wellen-Geschwindigkeitsreduktion. Ein zweidimensionaler Querschnitt, der mittels der RWB Methode und der Aufspaltung des Gesamtempfängerarrays in Subarrays gewonnen wurde, deutet darauf hin, dass die beobachteten Diskontinuitäten als intermittierende laterale Heterogenitäten mit einer Wellenlänge von einigen hundert km charakterisiert werden können. Die Kern-Mantel-Grenze (KMG) weist möglicherweise Undulationen mit einer Amplitude von 10 km auf. Die Migration weist nur schwache Hinweise für räumliche Streukörper auf. Die in der Migration abgebildeten heterogenen Regionen korrespondieren mit den mittels der RWB Methode gefundenen seismischen Diskontinuitäten. Bei den gefundenen Heterogenitäten könnte es sich um einen Teil eines aufsteigenden heißen Stroms unter dem südwestlichen Pazifik handeln. / The P- and S-wave velocity structure of the D” layer beneath the southwestern Pacific was investigated by using short-period data from 12 deep events in the Tonga-Fiji region recorded by the J-Array and the Hi-net in Japan. A migration method and reflected wave beamforming (RWB) were used in order to extract weak signals originating from small-scale heterogeneities in the lowermost mantle. In order to acquire high resolution, a double array method (DAM) which integrates source array beamforming with receiver array beamforming was applied to the data. A phase-weighted stacking technique, which reduces incoherent noise by employing complex trace analysis, was also applied to the data, amplifying the weak coherent signals from the lowermost mantle. This combination greatly enhances small phases common to the source and receiver beams. The results of the RWB method indicate that seismic energy is reflected at discontinuities near 2520 km and 2650 km, which have a negative P-wave velocity contrast of 1 % at the most. In addition, there is a positive seismic discontinuity at a depth of 2800 km. In the case of the S-wave, reflected energy is produced almost at the same depth (2550 km depth). The different depth (50 km) between the P-wave velocity discontinuity at the depth of 2800 and a further S-wave velocity discontinuity at the depth of 2850 km may indicate that the S-wave velocity reduction in the lowermost mantle is about 2-3 times stronger that that of P wave. A look at a 2D cross section, constructed with the RWB method, suggests that the observed discontinuities can be characterized as intermittent lateral heterogeneities whose lateral extent is a few hundred km, and that the CMB might have undulations on a scale of less than 10 km in amplitude. The migration shows only weak evidence for the existence of scattering objects. Heterogeneous regions in the migration belong to the detected seismic discontinuities. These anomalous structures may represent a part of hot plume generated beneath the southwestern Pacific in the lowermost mantle.
17

Time-dependent occurrence rates of large earthquakes in the Dead Sea fault zone and applications to probabilistic seismic hazard assessments

Hakimhashemi, Amir Hossein January 2009 (has links)
Die relativ hohe seismische Aktivität der Tote-Meer-Störungszone (Dead Sea Fault Zone - DSFZ) ist mit einem hohen Gefahrenpotential verbunden, welches zu einem erheblichen Erdbebenrisiko für die Ballungszentren in den Ländern Syrien, Libanon, Palästina, Jordanien und Israel führt. Eine Vielzahl massiver, zerstörerischer Erdbeben hat sich in diesem Raum in den letzten zwei Jahrtausenden ereignet. Ihre Wiederholungsrate zeigt Anzeichen für eine zeitliche Abhängigkeit, insbesondere wenn lange Zeiträume in Betracht gezogen werden. Die Berücksichtigung der zeitlichen Abhängigkeit des Auftretens von Erdbeben ist für eine realistische seismische Gefährdungseinschätzung von großer Bedeutung. Ziel der vorliegenden Arbeit ist es, anhand des zeitabhängigen Auftretens von Erdbeben eine robuste wahrscheinlichkeitstheoretische seismische Gefährdungseinschätzung am Beispiel der DSFZ zu entwickeln. Mittels dieser Methode soll die zeitliche Abhängigkeit des Auftretens von großen Erdbeben (Mw ≥ 6) untersucht und somit eine Gefährdungseinschätzung für das Untersuchungsgebiet getroffen werden. Primär gilt es zu prüfen, ob das Auftreten von großen Erdbeben tatsächlich einer zeitlichen Abhängigkeit unterliegt und wenn ja, inwiefern diese bestimmt werden kann. Zu diesem Zweck werden insgesamt vier zeitabhängige statistische Verteilungen (Weibull, Gamma, Lognormal und Brownian Passage Time (BPT)) sowie die zeitunabhängige Exponentialverteilung (Poisson-Prozess) getestet. Zur Abschätzung der jeweiligen Modellparameter wird eine modifizierte Methode der gewichteten Maximum-Likelihood-Schätzung (MLE) verwendet. Um einzuschätzen, ob die Wiederholungsrate von Erdbeben einer unimodalen oder multimodalen Form folgt, wird ein nichtparametrischer Bootstrap-Test für Multimodalität durchgeführt. Im Falle einer multimodalen Form wird neben der MLE zusätzlich eine Erwartungsmaximierungsmethode (EM) herangezogen. Zur Auswahl des am besten geeigneten Modells wird zum einem das Bayesschen Informationskriterium (BIC) und zum anderen der modifizierte Kolmogorow-Smirnow-Goodness-of-Fit-Test angewendet. Abschließend werden mittels der Bootstrap-Methode die Konfidenzintervalle der geschätzten Parameter berechnet. Als Datengrundlage werden Erdbeben mit Mw ≥ 6 seit dem Jahre 300 n. Chr. herangezogen. Das Untersuchungsgebiet erstreckt sich von 29.5° N bis 37° N und umfasst ein ca. 40 km breites Gebiet entlang der DSFZ. Aufgrund der seismotektonischen Situation im Untersuchungsgebiet wird zwischen einer südlichen, zentralen und nördlichen Subzone unterschieden. Dabei kann die südliche Subzone aus Mangel an Daten nicht für die Analysen herangezogen werden. Die Ergebnisse für die zentrale Subzone zeigen keinen signifikanten multimodalen Verlauf der Wiederholungsrate von Erdbeben. Des Weiteren ist kein signifikanter Unterschied zwischen den zeitabhängigen und dem zeitunabhängigem Modell zu verzeichnen. Da das zeitunabhängige Modell vergleichsweise einfach interpretierbar ist, wird die Wiederholungsrate von Erdbeben in dieser Subzone unter Annahme der Exponentialverteilungs-Hypothese abgeschätzt. Sie wird demnach als zeitunabhängig betrachtet und beträgt 9.72 * 10-3 Erdbeben (mit Mw ≥ 6) pro Jahr. Einen besonderen Fall stellt die nördliche Subzone dar. In diesem Gebiet tritt im Durchschnitt alle 51 Jahre ein massives Erdbeben (Mw ≥ 6) auf. Das letzte Erdbeben dieser Größe ereignete sich 1872 und liegt somit bereits 137 Jahre zurück. Somit ist in diesem Gebiet ein Erdbeben dieser Stärke überfällig. Im statistischen Mittel liegt die Zeit zwischen zwei Erdbeben zu 96% unter 137 Jahren. Zudem wird eine deutliche zeitliche Abhängigkeit der Erdbeben-Wiederauftretensrate durch die Ergebnisse der in der Arbeit neu entwickelten statistischen Verfahren bestätigt. Dabei ist festzustellen, dass die Wiederholungsrate insbesondere kurz nach einem Erdbeben eine sehr hohe zeitliche Abhängigkeit aufweist. Am besten repräsentiert werden die seismischen Bedingungen in der genannten Subzone durch ein bi-modales Weibull-Weibull-Modell. Die Wiederholungsrate ist eine glatte Zeitfunktion, welche zwei Häufungen von Datenpunkten in der Zeit nach dem Erdbeben zeigt. Dabei umfasst die erste Häufung einen Zeitraum von 80 Jahren, ausgehend vom Zeitpunkt des jeweiligen Bebens. Innerhalb dieser Zeitspanne ist die Wiederholungsrate extrem zeitabhängig. Die Wiederholungsrate direkt nach einem Beben ist sehr niedrig und steigert sich in den folgenden 10 Jahren erheblich bis zu einem Maximum von 0.024 Erdbeben/Jahr. Anschließend sinkt die Rate und erreicht ihr Minimum nach weiteren 70 Jahren mit 0.0145 Erdbeben/Jahr. An dieses Minimum schließt sich die zweite Häufung von Daten an, dessen Dauer abhängig von der Erdbebenwiederholungszeit ist. Innerhalb dieses Zeitfensters nimmt die Erdbeben-Wiederauftretensrate annähernd konstant um 0.015 Erdbeben/Jahr zu. Diese Ergebnisse bilden die Grundlage für eine zeitabhängige probabilistische seismische Gefährdungseinschätzung (PSHA) für die seismische Quellregion, die den nördlichen Raum der DSFZ umfasst. / The seismicity of the Dead Sea fault zone (DSFZ) during the last two millennia is characterized by a number of damaging and partly devastating earthquakes. These events pose a considerable seismic hazard and seismic risk to Syria, Lebanon, Palestine, Jordan, and Israel. The occurrence rates for large earthquakes along the DSFZ show indications to temporal changes in the long-term view. The aim of this thesis is to find out, if the occurrence rates of large earthquakes (Mw ≥ 6) in different parts of the DSFZ are time-dependent and how. The results are applied to probabilistic seismic hazard assessments (PSHA) in the DSFZ and neighboring areas. Therefore, four time-dependent statistical models (distributions), including Weibull, Gamma, Lognormal and Brownian Passage Time (BPT), are applied beside the exponential distribution (Poisson process) as the classical time-independent model. In order to make sure, if the earthquake occurrence rate follows a unimodal or a multimodal form, a nonparametric bootstrap test of multimodality has been done. A modified method of weighted Maximum Likelihood Estimation (MLE) is applied to estimate the parameters of the models. For the multimodal cases, an Expectation Maximization (EM) method is used in addition to the MLE method. The selection of the best model is done by two methods; the Bayesian Information Criterion (BIC) as well as a modified Kolmogorov-Smirnov goodness-of-fit test. Finally, the confidence intervals of the estimated parameters corresponding to the candidate models are calculated, using the bootstrap confidence sets. In this thesis, earthquakes with Mw ≥ 6 along the DSFZ, with a width of about 20 km and inside 29.5° ≤ latitude ≤ 37° are considered as the dataset. The completeness of this dataset is calculated since 300 A.D. The DSFZ has been divided into three sub zones; the southern, the central and the northern sub zone respectively. The central and the northern sub zones have been investigated but not the southern sub zone, because of the lack of sufficient data. The results of the thesis for the central part of the DSFZ show that the earthquake occurrence rate does not significantly pursue a multimodal form. There is also no considerable difference between the time-dependent and time-independent models. Since the time-independent model is easier to interpret, the earthquake occurrence rate in this sub zone has been estimated under the exponential distribution assumption (Poisson process) and will be considered as time-independent with the amount of 9.72 * 10-3 events/year. The northern part of the DSFZ is a special case, where the last earthquake has occurred in 1872 (about 137 years ago). However, the mean recurrence time of Mw ≥ 6 events in this area is about 51 years. Moreover, about 96 percent of the observed earthquake inter-event times (the time between two successive earthquakes) in the dataset regarding to this sub zone are smaller than 137 years. Therefore, it is a zone with an overdue earthquake. The results for this sub zone verify that the earthquake occurrence rate is strongly time-dependent, especially shortly after an earthquake occurrence. A bimodal Weibull-Weibull model has been selected as the best fit for this sub zone. The earthquake occurrence rate, corresponding to the selected model, is a smooth function of time and reveals two clusters within the time after an earthquake occurrence. The first cluster begins right after an earthquake occurrence, lasts about 80 years, and is explicitly time-dependent. The occurrence rate, regarding to this cluster, is considerably lower right after an earthquake occurrence, increases strongly during the following ten years and reaches its maximum about 0.024 events/year, then decreases over the next 70 years to its minimum about 0.0145 events/year. The second cluster begins 80 years after an earthquake occurrence and lasts until the next earthquake occurs. The earthquake occurrence rate, corresponding to this cluster, increases extremely slowly, such as it can be considered as an almost constant rate about 0.015 events/year. The results are applied to calculate the time-dependent PSHA in the northern part of the DSFZ and neighbouring areas.
18

The influence of crustal heterogeneity on translational and rotational motions in the seismic coda

Gaebler, Peter Jost 23 November 2015 (has links) (PDF)
In this study Monte Carlo solutions to the radiative transfer equations are used to model translational and rotational motion seismogram envelopes in random elastic media with deterministic background structure assuming multiple anisotropic scattering. The results of the Monte Carlo radiative transfer theory simulations are verified by comparisons with 3D full wave field finite difference simulations. The observation and modeling of the three additional components of rotational ground motions can provide independent information about seismic wave propagation in the Earth’s structure. Rotational motions around the vertical axis observed in the P-wave coda are of particular interest as they can only be excited by horizontally polarized shear waves and therefore indicate the conversion from P- to SH-energy by multiple scattering at 3D-heterogeneities. Scattering and attenuation parameters in south-east Germany beneath the Gräfenberg array and in the Vogtland region are estimated by comparisons of synthesized multi-component seismogram envelopes to seismic data from local and regional swarm earthquakes and to teleseismic events. In a first step, frequency dependent scattering and attenuation parameters from a local data set are estimated for the Vogtland region using nearby swarm earthquakes. The results from the elastic simulations are compared to outcomes from acoustic radiative transfer simulations. Both methods yield similar results and suggest that intrinsic attenuation dominates scattering attenuation. From the elastic simulations it is observable, that forward scattering is required to explain the data. However, the amount of forward scattering strength remains unresolvable. In a second step scattering and attenuation parameters beneath the Gräfenberg array are estimated using a nonlinear genetic inversion of seismogram envelopes from regional events at high frequencies (4–8 Hz). The preferred model of crustal heterogeneity consists of a random medium described by an exponential auto correlation function with a transport mean free path length of ∼ 420 km. The quality factor for elastic S-wave attenuation Q iS is around 700. In a final step simulations of teleseismic P-wave arrivals, using this estimated set of scattering and attenuation parameters, are compared to observed seismogram envelopes from deep events. Simulations of teleseismic events with the parameters found from the regional inversion show good agreement with the measured seismogram envelopes. This includes ringlaser observations of vertical rotations in the teleseismic P-wave coda that naturally result from the proposed model of wave scattering. The model also predicts, that the elastic energy recorded in the teleseismic P-coda is not equipartitioned, unlike the coda of regional events, but contains an excess of shear energy. The combined results from the three different data sets suggest that scattering generating the seismic coda mainly occurs in the crustal part of the lithosphere beneath the receivers. The observations do not require scattering of high frequency waves in the mantle, but weak scattering in the lithospheric mantle cannot be ruled out. / In dieser Studie werden Monte Carlo Lösungen für die Energietransfergleichungen genutzt, um Seismogrammeinhüllende von Translations- und Rotationsbewegungen zu modellieren. Die Ergebnisse der Monte Carlo Simulationen werden durch einen Vergleich mit 3D finiten Differenzen Simulationen verifiziert. Diese Modellierung findet in einem elastischen Zufallsmedium mit deterministischer Hintergrundstruktur unter Annahme multipler anisotroper Streuung statt. Die Beobachtung und Modellierung der drei zusätzlichen Komponenten der Rotationsbodenbewegungen kann unabhängige Informationen über die Ausbreitung seismischer Wellen im Erdkörper liefern. Rotationsbewegungen um die vertikale Achse in der P-Wellen Koda sind in diesem Zusammenhang von speziellem Interesse, da sie nur von horizontal polarisierten Scheerwellen angeregt werden können. Die gemessenen Rotationsbewegungen deuten folglich auf Konversionen von P- zu SH-Energie durch multiple Streuung an 3D-Heterogenitäten hin. Für die Bestimmung von Streu- und Dämpfungsparametern im Südosten Deutschlands (Gräfenberg Array, Vogtland) werden synthetisch erzeugte, mehrspurige Seismogrammeinhüllende mit Daten lokaler und regionaler Schwarmbeben und teleseismicher Ereignisse verglichen. In einem ersten Schritt werden frequenzabhängige Krustenparameter für die Vogtlandregion mittels eines lokalen Datensatzes von nahen Schwarmbeben bestimmt. Die Resultate mittels elastischer Energietransfertheorie werden mit Ergebnissen aus Simulationen mittels akustischer Energietransfertheorie verglichen. Beide Methoden liefern ähnliche Parameter und sagen einen größeren Einfluss der intrinsichen Dämpfung im Vergleich zur Streudämpfung voraus. Aus den elastischen Simulationen geht hervor, dass für die Beschreibung der Daten Vorwärtsstreung angenommen werden muss, die Stärke dieser lässt sich jedoch nicht auflösen. In einem zweiten Schritt werden die Streu- und Dämpfungseigenschaften der Erdkruste im Untergrund des Gräfenberg Arrays untersucht. Hierzu wird eine nicht-lineare genetische Inversion von Seismogrammeinhüllenden regionaler Ereignisse bei hohen Frequenzen (4–8 Hz) verwendet. Das bevorzugte Modell der Krustenheterogenität wird durch ein exponentielles Zufallsmedium, einer mittleren freien Transportweglänge von ca. 420 km und einem Qualitätsfaktor für S-Wellen Q iS von ca. 700 beschrieben. Ein letzter Schritt vergleicht Simulationen von teleseismischen P-Welleneinsätzen mit beobachteten Seismogrammeinüllenden von tiefen Erdbeben unter der Nutzung der Parameter aus der regionalen Inversion. Die Simulationen der teleseismischen Ereignisse mit den Parametern der regionalen Inversion zeigen eine gute Übereinstimmung mit den gemessenen Seismogrammeinhüllenden. Dieser Vergleich beinhaltet Ringlaserbeobachtungen der Rotationsbewegungen um die vertikale Achse, welche aus dem angenommenen Streumodell resultieren. Das Modell sagt voraus, dass die elastische Energie in der teleseismischen P-Wellen Koda im Gegensatz zur Koda lokaler oder regionaler Ereignisse nicht gleichverteilt ist, sondern einen Überschuss an Scheerenergie beinhaltet. Die Resultate aus den Untersuchungen der lokalen, regionalen und teleseismischen Datensätze zeigen, dass die Streuereignisse, welche die seismische Koda erklären, hauptsächlich in der Kruste unterhalb der seismischen Empfänger stattfinden. Streuung des Wellenfeldes im Mantel wird für die Erklärung der Daten nicht benötigt, schwache Streuung im lithosphärischen Mantel kann jedoch nicht ausgeschlossen werden.
19

Vertical Seismic Profiling in the Krafla Geothermal Field, NE-Iceland

Kästner, Felix 18 February 2016 (has links)
A VSP test experiment at the high temperature geothermal field Krafla in NE-Iceland has been carried out. In two boreholes a zero-, far-, and multi-offset VSP were applied to assess the applicability of VSP as a method for delineating subsurface structures like magmatic bodies, zones of supercritical fluids, superheated steam, and high permeability in volcanic geothermal fields. Because of high well temperatures (>150°C) and high attenuating surface layers, challenging field preparations were necessary. Three-component seismic data were recorded with a sufficient signal-to-noise ratio and dominant signal frequencies around 20 Hz and 40 Hz, down to 2200 m depth, for air gun and explosive sources, respectively. As a result, the data provide a good basis for several processing and imaging techniques. As part of this Master\'s thesis, standard and novel processing techniques of a subset of the data (zero and far-offset VSP in a single well) have been tested and show promising results in accordance with the lithology from well data. Besides velocity profiles and a corridor stack for both P- and S-waves were determined, a 3D Kirchhoff depth migration and Fresnel volume migration have been applied and tested. Already for a single source location, results show structures in the vicinity and below the well, and it can be assumed that further interpretation and data integration will provide a great potential in addition to hitherto applied teleseismic and potential methods. Especially, for geothermal sites it has been shown, that VSP can be applied and provide information of geometries where dipping faults and fracture zones are expected. The research leading to these results has received funding from the European Community\'s Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).
20

Distribution of Lateral Forces on Reinforced Masonry Bracing Elements Considering Inelastic Material Behavior - Deformation-Based Matrix Method -

Michel, Kenan 15 June 2021 (has links)
The main goal of CIC-BREL project (Cracked and Inelastic Calculation of BRacing Elements) is to develop an analytical method to distribute horizontal forces on bracing elements, in this case reinforced masonry shear walls, of a building considering the cracked and inelastic state of material. The moment curvature curve of the wall section is created first depending on the section geometry and material properties of both the masonry units and steel reinforcement. This curve will start with an elastic material behavior, then continue in inelastic material behavior where the masonry crushes and the steel start to yield, until the maximum bending moment M_p is reached. Due to reinforced masonry wall ductility, post maximum capacity is also considered assuming a maximum curvature of 0.1%. From the moment curvature curve, the force displacement curve could be extracted depending on the wall height and wall boundary conditions. Matrix formulation has been developed for both elastic and damaged stiffness matrix, considering different boundary conditions. Fixed-fixed boundary condition which usually exists at the middle stories or last story with strong top diaphragm, fixed-pinned which is the case of the last story that has a relatively soft top diaphragm, and pinned-fixed in the first story case. Other boundary conditions could be considered depending on the degree of fixation on the wall both ends at the top and the bottom. The matrix formulation combined with the force-displacement curve which considers different material stages (elastic, inelastic, ductile post peak force) is used to define forces in each bracing element even after elastic behavior. After elastic phase of each wall the stiffness of the element will degrade leading to a less portion of the total lateral force; other elastic walls, i.e., stronger walls, will receive more portion of the total force leading to a redistribution of the total force. This process will be iterated until the total force is distributed on each bracing element depending on the wall section state: elastic, inelastic and ductile post-peak capacity. Flowcharts clearly will show this process. Finally, a Fortran code is developed to show examples using this method. The developed analytical method will be verified by the results of shake table tests held at the University of California in San Diego, USA. Last test performed in the year 2018 uses T-section reinforced masonry walls, subjected to shakings with increased intensity. The total applied force for each shaking could be defined depending on the structural weight and shaking intensity (acceleration). The damage and displacement at each intensity has been recorded and evaluated. Depending on these test results, the results of the analytically developed method will be compared and evaluated. Total system displacement at different lateral load values has been compared for analytical calculations and shake table tests; furthermore, each wall state at increased load has been compared, good agreement could be noticed.:Acknowledgement 5 1. Introduction 7 1.1. State of the Art 9 1.2. Elastic Formulae 9 1.3. Example, Elastic Calculation 12 1.3.1. Stiffnesses of the System 13 1.3.2. Torsion due to Eccentric Lateral Loading 14 1.3.3. Distribution of the Lateral Load on Wall “j” and Floor “i” 15 2. Force Displacement Curve of RM Shear Wall 19 2.1. Introduction 19 2.2. Cantilever Wall 19 2.2.1. Cantilever Elastic Wall 19 2.2.2. Cantilever Inelastic Wall 21 2.2.3. Cantilever Post-Peak Wall 22 2.3. Fixed-Fixed Wall 23 2.3.1. Fixed-Fixed Elastic Wall 23 2.3.2. Fixed-Fixed Inelastic Wall 24 2.3.3. Fixed-Fixed Post-Peak Wall 26 2.4. Moment – Curvature Analysis 26 2.5. Example, Rectangle Cross Section, Cantilever 29 a) Moment Curvature Curve 29 b) Force Displacement Curve 32 2.6. Example, Rectangle Cross Section, Fixed-Fixed 33 a) Moment Curvature Curve 33 b) Force Displacement Curve 33 2.7. Example, T Cross Section, Cantilever 35 a) Moment Curvature Curve 35 b) Force Displacement Curve 41 2.8. Example, T Cross Section, Fixed-Fixed 43 a) Moment Curvature Curve 43 b) Force Displacement Curve 43 3. Matrix Formulation 47 3.1. Procedure 47 3.2. Structure Discretization 47 3.3. Element, i.e.; Wall, Local Stiffness Matrix 48 3.4. Stiffness Matrix of Fixed-Pinned Beam 52 3.4.1. Elastic 52 3.4.2. Pre-Peak Inelastic 54 3.4.3. Post-Peak Inelastic 55 3.4.4. Normal Force Part in the Stiffness Matrix 56 3.5. Stiffness Matrix of Pinned-Fixed Beam 57 3.5.1. Elastic 57 3.5.2. Post-Peak Inelastic 57 3.6. Stiffness Matrix of Fixed-Fixed Beam 58 3.6.1. Elastic 58 3.6.2. Post-Peak Inelastic 60 3.7. Summary of Stiffness Matrices 61 3.7.1. Fixed-Fixed 61 3.7.2. Fixed-Pinned 62 3.7.3. Pinned-Fixed 63 3.8. Transformation Matrix 63 3.9. Assemble the Structure Stiffness Matrix 65 3.10. Assemble the Structure Nodal Vector 66 3.11. Solve, Get Nodal Displacements and Forces 66 4. Matrix Formulation and Deformation Based Method 69 4.1. Elastic Method in Distributing Lateral Force 69 4.2. Elastic and Inelastic Method in Distributing Lateral Force 70 5. Shake Table Tests 73 5.1. Introduction 73 5.2. Design of Test Structure 73 5.3. Material Properties 75 5.4. Tests and Observations 75 5.4.1. Tests up to Mul-90% 76 5.4.2. Tests with Mul-120% 76 5.4.3. Tests with Mul-133% 76 5.5. Deformations 77 6. Verification 81 6.1. T Cross Section, Dimensions, Reinforcement and Materials 81 6.2. Moment Curvature Curve 82 6.3. Force Displacement Curve 85 6.4. Force Displacement Curve of the Structure 88 7. Conclusions and Suggestions 91 8. References 93 Appendix 1, Timoshenko Beam 95 • Fixed-Fixed 95 • Fixed-Pinned 95 • Pinned-Fixed 96 Appendix 2, Bernoulli Beam 97 • Fixed-Fixed 97 • Fixed-Pinned 97 • Pinned-Fixed 98

Page generated in 0.0689 seconds