• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration

Andreasen, Birgitta, Tanenbaum, David M., Hermenau, Martin, Voroshazi, Eszter, Lloyd, Matthew T., Galagan, Yulia, Zimmernann, Birger, Kudret, Suleyman, Maes, Wouter, Lutsen, Laurence, Vanderzande, Dirk, Würfel, Uli, Andriessen, Ronn, Rösch, Roland, Hoppe, Harald, Teran-Escobar, Gerardo, Lira-Cantu, Monica, Rivaton, Agnès, Uzunoğlu, Gülşah Y., Germack, David S., Hösel, Markus, Dam, Henrik F., Jørgensen, Mikkel, Gevorgyan, Suren A., Madsen, Morten V., Bundgaard, Eva, Krebs, Frederik C., Norrman, Kion 07 April 2014 (has links) (PDF)
The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
2

TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration

Andreasen, Birgitta, Tanenbaum, David M., Hermenau, Martin, Voroshazi, Eszter, Lloyd, Matthew T., Galagan, Yulia, Zimmernann, Birger, Kudret, Suleyman, Maes, Wouter, Lutsen, Laurence, Vanderzande, Dirk, Würfel, Uli, Andriessen, Ronn, Rösch, Roland, Hoppe, Harald, Teran-Escobar, Gerardo, Lira-Cantu, Monica, Rivaton, Agnès, Uzunoğlu, Gülşah Y., Germack, David S., Hösel, Markus, Dam, Henrik F., Jørgensen, Mikkel, Gevorgyan, Suren A., Madsen, Morten V., Bundgaard, Eva, Krebs, Frederik C., Norrman, Kion January 2012 (has links)
The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
3

A single-cell view on the intra- and inter-population metabolic heterogeneity and ecophysiology of microorganisms at different ecological scales

Calabrese, Federica 04 November 2021 (has links)
Metabolic heterogeneity (MH) occurs when isogenic microbial populations display cell-to-cell differences in metabolic traits, albeit exposed to homogeneous conditions. Despite the increasing focus on MH, its triggering factors remain largely unknown. In the present thesis, I used stable isotope probing and chemical imaging with nanoscale Secondary Ion Mass Spectrometry (nanoSIMS) to study MH at single-cell level, in model organisms, synthetic and natural communities, to understand i) how abiotic factors, biotic interactions and antibiotics exposure influence MH and ii) its potential ecological role. Moreover, I optimized sample preparation for chemical and high-resolution imaging and suggested two different indices as ‘unit measure’ of MH. As results, I have shown for the first time that MH is displayed by microorganisms under favorable growth conditions, although none of the tested abiotic factors prevailed as the main trigger of MH. I brought insights on how biotic interactions play a role in the functional heterogeneity using bacteria pseudo-fungi co-cultures. I found that antibiotics reduce Carbon and Nitrogen assimilation rates of targeted phylogenetic groups in river-water communities, while increasing their MH, pointing to its ecological importance in natural environments. To conclude, I provided novel insights on the phenomenon of MH and its dynamics at different ecological scales.:Abbreviation list Summary Introduction Knowledge gaps Results and discussion - Optimization of sample preparation - Validation of quantitation methods - Abiotic factors shaping metabolic heterogeneity in bacterial populations - Influence of biotic factors in shaping heterogeneity - Metabolic Heterogeneity and ecophysiology of natural microbial populations influenced by emerging contaminants Conclusions Outlook Bibliography Appendix Acknowledgments Curriculum Vitae List of publications

Page generated in 0.0402 seconds