Spelling suggestions: "subject:"self pierce riveting""
1 |
Self-Piercing Riveting of High Ductility Al-Fe-Zn-Mg Casting Alloy (Nemalloy HE700) in F Temper: Modelling, Simulation and Experimental AnalysisGuo, Yunsong January 2024 (has links)
This thesis presents a comprehensive investigation into the feasibility and optimization of self-piercing riveting (SPR) for joining high-ductility die-cast aluminum alloy Nemalloy HE700 in F temper (as-cast) condition to dissimilar sheet materials, namely wrought aluminum alloy 6082-T6 and dual-phase steel DP600. The study demonstrates successful SPR joining of HE700 to these materials, with optimized process parameters and joint quality meeting automotive industry standards. Systematic experimental studies were conducted to investigate the effects of key SPR process parameters, including die geometry, ring groove depth, rivet hardness, and length, on joint quality and performance. Microstructural characterization revealed distinct patterns of grain flow and localized hardening in HE700 around the rivet and die features, providing insights into its deformation characteristics.
Finite element simulations, incorporating advanced material models such as Johnson-Cook plasticity and failure for AA6082 and DP600, and Voce hardening with Gurson-Tvergaard-Needleman void damage model for HE700, were developed and extensively validated against experimental results. The simulations accurately predicted potential failure sites in HE700, aligning with experimental observations of crack initiation. Numerical parametric studies demonstrated the intricate effects of process parameters and material properties on the stress and strain distributions, material flow, and damage accumulation during SPR.
The research contributes to the growing body of knowledge on advanced joining techniques for dissimilar materials, supporting vehicle lightweighting efforts. It establishes a comprehensive methodology integrating experiments, microstructural characterization, and simulations for studying and optimizing SPR processes for low ductility casting alloys, serving as a blueprint for future research and industrial implementation. The findings demonstrate the viability and potential of SPR technology for integrating high-ductility die-cast aluminum alloy HE700 into lightweight automotive body structures, paving the way for its wider industrial adoption. / Thesis / Master of Applied Science (MASc) / This research explores the potential of using a novel high-ductility aluminum alloy, Nemalloy HE700, in self-piercing riveting (SPR) - a modern joining technique for automotive manufacturing. The study aims to optimize the SPR process for joining HE700 to other commonly used automotive materials, such as aluminum alloys and high-strength steels, without compromising joint quality. By conducting practical experiments and computer simulations, the research identifies the best process parameters, such as rivet design and die shape, that result in strong, reliable joints meeting automotive industry standards. The findings demonstrate the successful use of HE700 in SPR, offering a promising solution for creating lighter, more fuel-efficient vehicles. This work contributes to the development of advanced joining technologies for sustainable transportation, making vehicles more environmentally friendly while maintaining high performance and safety standards.
|
2 |
Simulation numérique du procédé de rivetage auto-poinçonneur et étude expérimentale : application à un assemblage multi-matériaux polymère-acier issu de l’industrie automobile / Numerical simulation of self-piercing riveting process and experimental investigation : Application to a multi-material polymer-steel assembly from the automotive industryAmro, Elias 11 September 2019 (has links)
Ces travaux de thèse portent sur la question de l'assemblage multi-matériaux polymère-acier. Dans un environnement automobile grande série, le rivetage auto-poinçonneur est le procédé d'assemblage proposé qui permet de répondre à la problématique industrielle. Dans un premier temps, la faisabilité de la technique i été étudiée en recherchant l'influence de la vitesse de rivetage et de l'effort serre-flan sur les caractéristiques géométriques du joint riveté et sur la tenue mécanique. Ainsi, il se révèle que l'augmentation de la vitesse de rivetage a un effet favorable: l'effort à la rupture en traction pure augmente de +10% en accord avec l'augmentation de l'ancrage mécanique. Par contre, l'augmentation de l'effort serre-flan a un effet défavorable : l'effort à la rupture en traction pure et en traction-cisaillement diminue de -6.6%. Par la suite, un modèle numérique 2D axisymétrique a été mis au point dans le but de simuler l'opération de rivetage. Les propriétés mécaniques effectives du matériau composite sont estimées par une méthode d'homogénéisation tandis que le comportement mécanique du matériau acier par un modèle élasto-plastique endommageable. Comparée à la coupe transversale issue d'un essai expérimental, la simulation effectuée sous Abaqus 6.10- 1® démontre être capable de correctement prédire la déformée en particulier pour la valeur d'ancrage mécanique. Enfin, un modèle numérique 30 a été développé et permet de simuler des chargements destructifs et asymétriques. L'effort à rupture et les déformées macroscopiques estimées sont en bon accord avec les résultats expérimentaux, grâce notamment à la prise en compte de l'endommagement local de la couche composite. / This thesis work is dealing with the issue of multi-material polymer-steel joining. Within a large-scale automotive environment, self-piercing riveting is the proposed joining technique to tackle the industrial challenge. Firstly, the feasibility of the technique is studied by investigating the influence of the riveting velocity and the sheet holder load on the geometrical characteristics of the riveted joint and the mechanical strength. Thus, it turns out that the increase in riveting velocity has a favorable effect: the joint strength in pure tension mode increases by +10% in agreement with the increase in mechanical anchoring. However, the increase of the sheet holder load has an unfavorable effect: the joint strength in cross tension and in shear modes decreases by -6.6%. Subsequently, an axisymmetrical 20 numerical model has been created enabling the simulation of the riveting operation. The effective mechanical properties of the composite material are estimated by a homogenization method while the mechanical behavior of the steel material is managed through an elastic-plastic model with damage. Compared with a cross section resulting from an experimental test, the simulation carried out under Abaqus 6.10-1® demonstrates being able to correctly predict the deformations, the anchoring value more particularly. Finally, a 30 numerical model has been developed and allows the simulation of destructive and asymmetrical loadings. The joint strength and the macroscopic deformations estimated are in good agreement with the experimental results, especially when taking into account the local damage of the composite laver.
|
3 |
Development of a Highly Flexible Geometry Station for Versatile Production Systems in Automotive Body Construction : A Station designed for Joining of Body-in-White Assemblies duringan Integration of Electric Vehicles / Framtagning av en högflexibel geometristation för mångsidiga produktionssyteminom fordonsindustrinKnutsson, Erik January 2018 (has links)
The research in this report seeks to develop a highly flexible geometry station for joining futureBody-in-White (BiW) assemblies. The goal is to eliminate the need for a complete reconstructionof a production line during integration of new car bodies in a contemporary production.Today's BiW production is performed in sequential lines, where joining equipment is arranged ina specific order for each model geometry. An increasing model portfolio forces manufacturers todevelop production systems that allow an integration of new models. Electrified alternatives ofexisting models are now developed and put into production. These models have similarappearance as conventional models, but with a completely different principle of driveline due tothe propulsion. This means that new interfaces and platforms have to be developed and mustnow be integrated into a current production. Today's production lines are not prepared forcoming changes, and current stations can only handle a limited number of variants. Integration ofnew geometries into a contemporary production line is not sufficiently efficient from aproduction perspective. The goal of the future is to make such an integration possible.Initially, current and future production scenarios were studied. Based on this, four types ofproduction scenarios, which a highly flexible geometry station can be integrated into, were set up.An integration can take place in different ways depending on how a highly flexible geometrystation is compounded, therefore, different cases were created and compared in a case study.Internal and external benchmarking of production systems were made to compare the availablesolutions for increasing stations flexibility in a BiW production.As reference for the project, a concept for a highly flexible geometry station has been developedand is therefore described initially before an additional depth has been realized. The furtherconceptualization of a highly flexible geometry in this report is presented in the form of amorphological composition of technologies that can increase a station's flexibility, as well asvisualization of a station principles through layouts and cycle time charts. The result of theanalysis generated several concepts that hold different degrees of capacity, footprint andflexibility. The focus was to achieve a high level of flexibility for integration of new models, withnew geometries, in a current production. The conclusion was that the highly flexible geometrystation can, in a contemporary production, produce independently in low volumes. Alternatively,produce higher volumes when it is integrated as a complement in a novel, not yet implemented,production concept. / Forskningen i denna rapport syftar till att utveckla en högflexibel geometristation för fogning avkommande Body-in-White-karosser (BiW). Målet är att eliminera behovet av en fullständigrekonstruktion av en produktionslinje under integrering av nya bilar i en samtida produktion.Dagens BiW-produktion sker i sekventiella liner, där fogningsutrustning är arrangerad i enspecifik ordning för respektive modellgeometri. Ett ökande antal modellalternativ drivertillverkare till att utveckla produktionskoncept som möjliggör integration av nya modeller.Elektrificerande alternativ till befintliga modeller utvecklas kontinuerligt. Dessa modeller ärutseendemässigt lika de konventionella modellerna, men med en helt annan princip för drivlina.Det innebär att nya gränssnitt och plattformar har tagits fram och måste nu integreras i ennuvarande produktion. Dagens produktionslinjer är inte förberedda för kommande förändringaroch nuvarande geometristationer kan endast hantera ett begränsat antal karosstyper. Integrationav nya karosstyper i en befintlig produktionslinje är inte är tillräckligt effektivt ur ettproduktionsperspektiv. Framtidens mål är att göra en sådan integration möjlig.Inledningsvis studerades nuvarande- och kommande produktionsscenarion. Utifrån det beskrevsfyra produktionstyper, vilket en högflexibel geometristation kan komma att integreras i. Enintegration kan ske på olika vis beroende på hur en högflexibel geometristation tillämpas, därförjämfördes olika fall av det i en Case-studie. En intern och extern benchmarking avproduktionssystem gjordes för att jämföra de lösningar som finns för att öka flexibiliteten i enBiW-produktion.Som referensunderlag till projektet har ett koncept för en högflexibel geometristation tagits framoch är beskrivet inledningsvis innan en ytterligare fördjupning har realiserats.Konceptualiseringen av en högflexibel geometristation i denna rapport är presenterad i form aven morfologisk sammansättning av teknologier som kan öka en stations flexibilitet, samtvisualisering av en principiell station genom layouter och cykeltidsdiagram. Resultatet av analysengenererade flera koncept som innehar olika grad av kapacitet, fabriksyta och flexibilitet. Fokus varatt uppnå en hög flexibilitetsnivå för integration av nya modeller, med nya geometrier, i ennuvarande produktion. Slutsatsen var att den högflexibla geometristationen kan, i en nutidaproduktion, producera självständigt i låga volymer. Alternativt producera högre volymer då denintegreras som ett komplement till ett ännu inte implementerat nytt produktionskoncept. / Die Forschung in diesem Bericht zielt darauf ab, eine hochflexible Geometrie-Station für das Fügen zukünftiger Rohbau-Baugruppen zu entwickeln. Das Ziel ist es, die Notwendigkeit einer vollständigen Rekonstruktion einer Produktionslinie während der Integration neuer Karosserien in einer modernen Produktion zu beseitigen. Die heutige Rohbau Produktion wird in sequenziellen Linien durchgeführt, wobei die einzelnen Fügeverfahren in einer bestimmten Reihenfolge, angepasst an die jeweilige Modellgeometrie, angeordnet sind. Ein zunehmendes Modellportfolio zwingt die Automobilhersteller zur Entwicklung von Produktionssystemen, die eine Integration neuer Modelle ermöglichen. Elektrifizierte Varianten bestehender Fahrzeugmodelle werden nun entwickelt und in Produktion gebracht. Diese Modelle haben ein ähnliches Erscheinungsbild wie herkömmliche Modelle, jedoch mit einem stark veränderten Antriebskonzept. Dies bedeutet, dass neue Schnittstellen und Plattformen entwickelt wurden und nun in eine aktuelle Produktion integriert werden müssen. Heutige Produktionslinien sind nicht auf kommende Änderungen vorbereitet und können nur eine begrenzte Anzahl von Varianten handhaben. Die Integration neuer Geometrien in eine moderne Produktionslinie ist aus Produktionssicht nicht effizient, aber soll in Zukunft das Ziel sein. Zunächst wurden aktuelle und zukünftige Produktionsszenarien untersucht. Darauf aufbauend wurden vier Arten von Produktionsszenarien erarbeitet, in die eine hochflexible Geometriestation integriert werden kann. Je nach Aufbau der Geostation kann eine Integration auf unterschiedliche Art und Weise erfolgen. Daher wurden in einer Fallstudie unterschiedliche Fälle erstellt und verglichen. Ein Benchmarking mit internen und externen Produktionssystemen wurde durchgeführt, um eine größtmöglichste Flexibilität der Stationen in einer Rohbau Produktion zu erzielen. Als Referenz für das Projekt wurde ein Konzept für eine hochflexible Geometriestation entwickelt und im Rahmen der Thesis dokumentiert, bevor eine zusätzliche Tiefe realisiert wurde. Die weitere Konzeptionierung einer hochflexiblen Geometrie-Station wird in Form einer morphologischen Zusammensetzung von Technologien präsentiert. Dieser kann die Flexibilität einer Station erhöhen und zudem die Visualisierung von Stationsprinzipien, beispielsweise durch Layouts oder Zykluszeitdiagramme, fördern. Das Ergebnis der Analyse erzeugte mehrere vi Konzepte, die unterschiedliche Grade an Kapazität, Grundfläche und Flexibilität beinhalteten. Der Fokus lag auf einer hohen Flexibilität bei der Integration neuer Modelle mit neuen Geometrien in einer aktuellen Produktion. Die Schlussfolgerung war, dass die hochflexible Geometriestation in einer zeitgemäßen Produktion in kleinen Stückzahlen produzieren kann. Alternativ ist die Geo-Station auch als Bestandteil eines noch umzusetzenden Produktionskonzepts integrierbar.
|
4 |
Development and Characterization of Friction Bit Joining: A New Solid State Spot Joining Technology Applied to Dissimilar Al/Steel JointsSiemssen, Brandon Raymond 18 June 2008 (has links) (PDF)
Friction bit joining (FBJ) is a new solid-state spot joining technology developed in cooperation between Brigham Young University of Provo Utah, and MegaStir Technologies of West Bountiful Utah. Although capable of joining several different material combinations, this research focuses on the application of FBJ to joining 5754 aluminum to DP 980 steel, two alloys commonly used in automotive applications. The thicknesses of the materials used were 0.070 inches (1.78 mm) and 0.065 inches (1.65 mm), respectively. The FBJ process employs a consumable 4140 steel bit and is carried out on a purpose built research machine. In the first stage of the weld cycle the bit is used to drill through the aluminum top sheet to be joined. After this, spindle speed is increased so that the bit tip effectively forms a friction weld to the steel bottom sheet. Momentary stoppage of the spindle facilitates weld cooling before the spindle is restarted, shearing the bit tip from the bit shank, and retracted. Incorporated into the bit tip geometry is a flange that securely holds the aluminum in place after joint formation is complete. This research consists of several developmental steps since the technology only recently began to be formally studied. Initial joint strengths observed in lapshear tensile testing averaged only 978.5 pounds (4.35 kN), with a relatively high standard deviation for the data set. Final lapshear tensile test results were improved to an average of 1421.8 pounds (6.32 kN), with a significantly lower, and acceptable, standard deviation for the data set. Similar improvements were realized during the development work in cross tension tensile test results, as average strengths increased from 255.8 pounds (1.14 kN) to 566.3 pounds (2.52 kN). Improvements were also observed in the standard deviation values of cross tension data sets from initial evaluation to the final data set presented in this work.
|
Page generated in 0.1242 seconds