• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 11
  • 11
  • 9
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Full Duplex in a Military Scenario : Feasibility of Practical Implementation

Ranström, Thomas January 2019 (has links)
In order to achieve Full Duplex (FD) communication, currently studied solutionsfor the commercial sector rely on advanced Self-Interferece Cancellation (SIC)techniques to remove the transmitted signal from the received one. This thesis expandsthe research of these techniques by evaluating their potential usage in militarycommunication scenarios where requirements and conditions are distinct,firstly, by identifying, categorizing and describing a set of previously proposedsic techniques and secondly, by performing a comprehensive simulation andanalysis of two suggested sic techniques as part of a FD transceiver. Though themajority of the considered SIC techniques was determined to be potentially implementablein military FD transceivers, some frequency-dependent techniquesand techniques prohibiting omnidirectional communication could not be used.The simulation and analysis of the two suggested SIC techniques show that undercertain conditions, such as limited transmission power and/or reflective environment,close to complete suppression could be realized even with high nonlineardistortion in the transmit chain.
2

Detection of GPS C/A Code Self-Interference: An Evaluation of Monitors

Belzer, Jessica A. January 2022 (has links)
No description available.
3

IMPACT OF NOISES AND NONLINEARITY ON ANALOG SELF-INTERFERENCE CANCELLATION IN IN-BAND FULL-DUPLEX COMMUNICATIONS

Jonathan M Shilling (11813957) 18 December 2021 (has links)
<p>A wireless revolution has occurred resulting in the formation of a proverbial backbone of wireless devices that our everyday functionality, productivity, and general way of life have become dependent. Consequently, victimizing an already constrained and finite wireless spectrum with further demands for increased bandwidths, greater channel capacities, and an insatiable plea for faster access rates. In-band full-duplexing (IBFD) is an innovative and encouraging technology that aims to answer this tacit mitigation call by bolstering spectral efficiency through simultaneous same frequency band transmission and reception. Conventionally, transceiver-based systems have their respective transmission and reception dictated by occurring in either disparate time slots (half-duplex) or distinct frequencies (out-of-band full-duplex). By achieving simultaneous same band communication, a theoretical doubling in spectral efficiency is rendered feasible. However, transmitter to receiver leakage, or self-interference (SI), remains the most barring frustration to IBFD realization. Being locally generated, SI is considerably stronger (often 50-100dB) than the desired signal-of-interest (SOI). Left unresolved, this unwanted energy saturates the receiver’s amplifiers and desensitizes its analog-to-digital converters. Thus, rendering the SOI unintelligible. Therefore, a means of self-interference cancellation (SIC) is necessitated to suppress any polluting SI to levels that of or below the receiver’s noise floor.</p><p></p>In this thesis an in-depth history of in-band full duplex technology is first presented, followed by a condensed examination of the SIC domains. Pertinent theory is presented pertaining to noise analysis and estimation relevant to a proposed IBFD transceiver architecture. Finally, a modelled simulation of this transceiver, developed in MATLAB, is presented. Subsequent results detailing an investigative study done on a fully adaptive tapped-branch analog self-interference canceller are shown. Said canceller’s variable phase and amplitude weights are set via real-time training using gradient descent algorithms. Evaluation of the results reveal marginal effect on the SIC efficacy due to transmission path nonlinearity and noise distortions alone. However, expansion of model consideration for conceivable cancellation hardware nonlinearities reveals an indirectly proportional degradation of SIC performance by up to 35dB as distortion levels vary from -80 dBm to -10 dBm. These results indicate consideration of such non-idealities should be an integral part of cancellation hardware design for the preclusion of any intrinsic cancellation impediments.
4

Hardware Prototyping of Two-Way Relay Systems

Wu, Qiong 2012 August 1900 (has links)
In this thesis, I conduct the hardware prototyping of a two-way relay system using the National Instruments FlexRIO hardware platform. First of all, I develop several practical mechanisms to solve the critical synchronization issues of the systems, including Orthogonal Frequency-Division Multiplexing (OFDM) frame synchronization at the receiver, source to source node synchronization, and handshaking between the sources and relay nodes. Those synchronization methods control the behavior of the two source nodes and the relay node, which play critical roles in the two-way relay systems. Secondly, I develop a pilot-based channel estimation scheme and validate it by showing the successful self-interference cancellation for the two-way relay systems. In particular, I experiment the self-interference cancellation technique by using several channel estimation schemes to estimate both source to relay channels and relay to source channels. Moreover, I implement the physical layer of a 5 MHz OFDM scheme for the two-way relay system. Both the transmitter and receiver are designed to mimic the Long Term Evolution (LTE) downlink scenario. The physical layer of the transmitter has been implemented in Field-Programmable Gate Arrays (FPGAs) and executed on the hardware board, which provides high throughput and fundamental building blocks for the two-way relay system. The physical layer of receiver is implemented in the real-time controller, which provides the ?exibility to rapidly recon?gure the system. Finally, I demonstrate that the 5MHz OFDM based two-way relay system can achieve reliable communications, when the channel estimation and system synchronization can be correctly executed.
5

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation

January 2017 (has links)
abstract: The demand for the higher data rate in the wireless telecommunication is increasing rapidly. Providing higher data rate in cellular telecommunication systems is limited because of the limited physical resources such as telecommunication frequency channels. Besides, interference with the other users and self-interference signal in the receiver are the other challenges in increasing the bandwidth of the wireless telecommunication system. Full duplex wireless communication transmits and receives at the same time and the same frequency which was assumed impossible in the conventional wireless communication systems. Full duplex wireless communication, compared to the conventional wireless communication, doubles the channel efficiency and bandwidth. In addition, full duplex wireless communication system simplifies the reusing of the radio resources in small cells to eliminate the backhaul problem and simplifies the management of the spectrum. Finally, the full duplex telecommunication system reduces the costs of future wireless communication systems. The main challenge in the full duplex wireless is the self-interference signal at the receiver which is very large compared to the receiver noise floor and it degrades the receiver performance significantly. In this dissertation, different techniques for the antenna interface and self-interference cancellation are proposed for the wireless full duplex transceiver. These techniques are designed and implemented on CMOS technology. The measurement results show that the full duplex wireless is possible for the short range and cellular wireless communication systems. / Dissertation/Thesis / Doctoral Dissertation Engineering 2017
6

Channel Estimation in Half and Full Duplex Relays

January 2018 (has links)
abstract: Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial. The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, a closed-form for the optimal ratio of data energy to total energy is derived. It can be shown that the achievable rate is a monotonically increasing function of the data length. The asymmetric case is discussed as well. Efficient and accurate training schemes for FD TWRs are essential for profiting from the inherent spectrally efficient structures of both FD and TWRs. A novel one-block training scheme with a maximum likelihood (ML) estimator is proposed to estimate the channels between the nodes and the residual self-interference (RSI) channel simultaneously. Baseline training schemes are also considered to compare with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes are derived and analyzed by using the asymptotic properties of Toeplitz matrices. The benefit of estimating the RSI channel is shown analytically in terms of Fisher information. To obtain fundamental and analytic results of how the RSI affects the spectral efficiency, one-way FD relay systems are studied. Optimal training design and ML channel estimation are proposed to estimate the RSI channel. The CRBs are derived and analyzed in closed-form so that the optimal training sequence can be found via minimizing the CRB. Extensions of the training scheme to frequency-selective channels and multiple relays are also presented. Simultaneously sensing and transmission in an FD cognitive radio system with MIMO is considered. The trade-off between the transmission rate and the detection accuracy is characterized by the sum-rate of the primary and the secondary users. Different beamforming and combining schemes are proposed and compared. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
7

Optimal Power Allocation and Secrecy Capacity of The Full-Duplex Amplify-and-Forward Wire-tap Relay Channel Under Residual Self-Interference

Dang, Cuong Hung January 2015 (has links)
No description available.
8

Application of Genetic Algorithm in Designing Matching and Decoupling Networks for Asymmetric Two-Element Antenna Arrays

Chakma, Nishako 07 1900 (has links)
In this thesis, I demonstrate a genetic-algorithm-based optimization method for designing matching and decoupling networks (MDNs) for asymmetric two-element antenna arrays. The proposed method considers practical aspects in MDN realization by accounting for short pieces of transmission lines between the lumped elements and only using capacitor/inductor values from a predefined database of commercially available lumped component values. In addition, the proposed algorithm is able to explore all subsets of a general MDN topology in its search for a solution, providing some flexibility for system optimization (e.g., reducing the number of lumped elements used in an MDN). Details about the proposed approach along with performance analysis of four design examples based on this method are presented. One of the designs was fabricated and measured to demonstrate the effectiveness of the proposed design method. Chapter 1 provides the motivation and context for this work with relevant literature review and objectives of this thesis. Chapter 2 reviews existing MDN design techniques and discusses practical design considerations for the proposed method. Chapter 3 briefly discusses the basics of genetic algorithm (GA) and its relevance to this work. Chapter 4 presents the method proposed in my thesis work and describes how the genetic algorithm is implemented for designing MDNs for asymmetric two-element antenna arrays. Chapter 5 reports the details of four different MDN design examples along with their simulation and measurement results. Chapter 6 concludes the thesis work and discusses potential future development to further advance this work.
9

In-Band Full-Duplex Transmission for Next Generation Mobile Communication / 次世代移動通信における帯域内全二重通信

Mori, Shota 25 March 2024 (has links)
付記する学位プログラム名: 社会を駆動するプラットフォーム学卓越大学院プログラム / 京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25441号 / 情博第879号 / 新制||情||147(附属図書館) / 京都大学大学院情報学研究科情報学専攻 / (主査)教授 原田 博司, 教授 佐藤 高史, 教授 林 和則 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DGAM
10

The development of self-interference of split HOLZ (SIS-HOLZ) lines for measuring z-dependent atomic displacement in crystals

Norouzpour, Mana 01 May 2017 (has links)
Measuring atomic displacement inside crystals has been an important field of interest for decades especially in semiconductor industry for its effect on the crystal structure and symmetry, subsequently on the bandgap structure. There are three different image based, diffraction based, and electron holography based techniques using transmission electron microscope (TEM). These methods enable measuring atomic displacement inside specimen. However, among all TEM techniques offering nano-scale resolution measurements, convergent beam electron diffraction (CBED) patterns show the highest sensitivity to the atomic displacement. Higher order Laue zone (HOLZ) lines split by small variations of lattice constant allowing the atomic displacement measurement through the crystal. However it is a cumbersome measurement and it can only reveal the atomic displacement in two dimensions. Therefore, the atomic displacement information at each depth through the specimen thickness is still missing. This information can be obtained by recovering the phase information across the split HOLZ line. The phase profile across the split HOLZ line can be retrieved by the electron interferometry method. The phase of the diffracted beam is the required information to reconstruct the atomic displacement profile through the specimen thickness. In this work, we first propose a novel technique of self-interference of split HOLZ line based on the diffracted beam interferometry which recovers the phase information across the split HOLZ line. The experimental details of the technique have been examined to report the parameters in order to implement the method. Regarding the novelty of the technique and the lack of the of a reference phase profile to discuss the results, phase profile simulation was a main contribution. For simulating the phase profile across the split HOLZ line the Howie-Whelan formula supporting the kinematical theory of diffraction is used. Accordingly, the analytical approach to simulate the phase profiles across the split HOLZ line for three various suggested atomic displacements are studied. Also, the effect of some parameters such as the atomic displacement amplitude, the specimen thickness, and the g reflection is investigated on the phase profile. This study leads to an equation used for fitting the experimental results with the simulated phase profile. Consequently, self-interference of split HOLZ line (SIS-HOLZ) is studied as a method of reconstructing the phase profile across the split HOLZ line which carries the information of atomic displacement through the specimen thickness. / Graduate / 0548 / 0794 / mananrp@uvic.ca

Page generated in 0.0655 seconds