21 |
Polytriarylamines containing fused ring and heterocyclic structures prepared using N-heterocyclic carbene complexes of palladiumSprick, Reiner Sebastian January 2013 (has links)
For the preparation of semiconducting polymers often ‘standard’ catalytic systems are used without further optimisation. New ligands, such as N-heterocyclic carbenes have shown excellent activity in cross-coupling reactions (e.g. Suzuki-Miyaura reaction, or Hartwig-Buchwald amination). These systems show excellent conversions under mild conditions and even allow the use of aryl chlorides as reagents. Nevertheless, previously no system has been reported for the synthesis of conjugated polymers, e.g. the Suzuki polycondensation or Buchwald-Hartwig type polycondensation using these catalysts. A NHC-Pd based catalytic system was optimised for a polyamination reaction and the catalyst [(IPr)Pd(allyl)Cl] was found to be the most active. Polytriarylamines were synthesised using the optimised catalytic system and tested in organic field-effect transistors. Mobilities found were low which was found to be attributed to the presence of high molecular weight fractions. Molecular weights were controlled using an in situ end-capping approach and polymers tested in the semiconducting layer of OFETs gave similar mobilities tothose reported earlier. Several polytriarylamines, which have not been reported previously, were synthesised using NHC-chemistry and the in situ end-cappingapproach, as well as polytriarylamines that have been reported previously using Pd/phosphine catalysts. One library containing polymers based on biphenyles andbridged biphenyles and another library containing polymers with bridged oligoarenes were synthesised. Suzuki polycondensation was also studied besides the polyamination protocol and low catalyst loadings and reaction temperatures could be realised using a NHC-Pd catalyst. Sulfur containing monomers that could not be polymerised using the polyamination were polymerised successfully. All polymers were fully characterised and studied as the active layer in organic field-effect transistors. The highest mobilities determined for these polymers (~10-2 cm2/Vs) is close to the highest reported for this class of polymer reported to date.
|
22 |
International Workshop on Measuring Techniques for Liquid Metal Flows (MTLM), Rossendorf, 11.-13.10.99, Proceedings: International Workshop on Measuring Techniques for Liquid Metal Flows (MTLM), Rossendorf, 11.-13.10.99, ProceedingsGerbeth, Gunter, Eckert, Sven January 1999 (has links)
The International Workshop on "Measuring Techniques in Liquid Metal Flows" (MTLM Workshop) was organised in frame of the Dresden "Innovationskolleg Magnetofluiddynamik". The subject of the MTLM Workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of non-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available to monitor and to control flow processes in real industrial facilities.
|
23 |
Molecular Orientation Control of Organic Semiconducting Materials for Thin Film Electronics / 薄膜エレクトロニクスのための有機半導体材料の分子配向制御Nakamura, Tomoya 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21785号 / 工博第4602号 / 新制||工||1717(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 村田 靖次郎, 教授 大江 浩一, 教授 中村 正治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
24 |
Measurements of the Microwave Conductivity of N-Type GermaniumRahman, Mohammad Hasibur 03 1900 (has links)
<p> An investigation has been made of the microwave reflections from the surface of a semiconducting medium with complex permittivity (^ε = εrεo -jσ/ω) at the open end of
an empty rectangular waveguide. The approximate and exact solutions of the reflection coefficients at the surfaces of both finite and semi-infinite media have been found as a function of the complex permittivity of the medium. The computations of the reflection coefficients are made at the 10 and 35 GHz ranges. Measurements, which confirm these
calculations, have been performed with n-type germanium, selectron, and air at the open end of a rectangular waveguide using a reflection type microwave bridge. The investigation has shown that it is possible to devise a convenient method of measuring the conductivity and dielectric constant of semiconductors.</p> <p> The theory of operation of the microwave reflection bridge together with the setting-up (matching) procedure of a practical form of the bridge has been presented. A method is also described for the correction of the measurement
error which arises from the scattering coefficients at the input ports of the precision attenuator.</p> <p> A theoretical and experimental study has also been made of the small- signal microwave conductivity of n-type germanium at room temperature in the presence of a high electric field, directed at an angle θ to the microwave field. The study has shown that at frequencies such as 10 GHz, the microwave conductivity becomes anisotropic with respect to the direction of the d.c. field vector. Measurements are made on an 11.4 ohm cm, n-type germanium sample at 9.381 GHz with applied electric fields up to 1.8 KV/cm for θ = 0°,
40°, and 90°. The ''open-end-waveguide measuring technique", which allows the angle between the microwave and d.c. field vectors to be varied, was employed to measure the microwave conductivity. The results of measurements which agree with predictions, confirm the feasibility of operation of a new microwave device based on the anisotropic effect.</p> / Thesis / Doctor of Philosophy (PhD)
|
25 |
Purification of Semiconducting and Metallic Single-Walled Carbon Nanotubes Using Conjugated PolymersBodnaryk, William January 2020 (has links)
Single-walled carbon nanotubes (SWNTs) have attracted extensive research effort
since their discovery nearly 30 years ago. Their impressive mechanical, optical, thermal,
and electronic properties make them promising candidates for incorporation into a variety
of applications. Depending on the method used for SWNT synthesis, different diameter
ranges can be produced. Within these diameter ranges, a heterogeneous mixture of
semiconducting and metallic species are present. The combination of these electronic
species, as well as their minimal solubility in common solvents, hinders their incorporation
into electronic devices, providing reasons for the development of scalable purification
techniques. Although, some impactful purification strategies have been developed in recent
literature, the use of conjugated polymers is considerably more scalable, less expensive,
and offers processability of the final purified material. At the time of this thesis, the
purification of semiconducting SWNTs has been realized using electron-rich conjugated
polymers such as polyfluorenes, polycarbazoles, and polythiophenes. For metallic SWNTs,
less progress has been made. When enriched, metallic SWNTs could act as an effective
replacement for common metals in conductive applications. The objective of this work is to develop an efficient and scalable technique for the dispersion of metallic SWNTs and to shed light on the effect of polymer electronics on SWNT dispersion selectivity using nitrated poly(fluorene-co-phenylene)s and cationic poly(fluorene-co-pyridine)s. These investigations lead to the development of novel techniques using multiple conjugated polymers to yield enriched metallic SWNT samples. A secondary objective of this work is to investigate the gentle removal of the polymer, post-purification using UV-irradiation to cleave the polymer linkages of a poly(carbazole-co-terephthalate). Characterization of the polymer-SWNT composites is carried out using absorbance, photoluminescence, and Raman spectroscopy techniques to evaluate their electronic purity. / Thesis / Doctor of Philosophy (PhD)
|
26 |
Μελέτη των ηλεκτρονιακών ιδιοτήτων της επιφάνειας ημιαγώγιμων πολυμερών για εφαρμογές σε φωτοβολταϊκά κελιάΤάντης, Ιωσήφ 14 October 2013 (has links)
Τα οργανικά φωτοβολταϊκά (OPV) είναι συσκευές που παρουσιάζουν μια ελκυστική λύση για εφαρμογές ηλιακής ενέργειας λόγω του χαμηλού κόστους παραγωγής τους, της μηχανικής
ευκαμψίας και τη δυνατότητα παραγωγής συσκευών μεγάλης έκτασης και μικρού βάρους. Οι πιο αποδοτικοί δέκτες ηλεκτρονίων μέχρι σήμερα στα OPVs βασίζονται σε τροποποιημένα
φουλερένια. Ωστόσο, χρειάζονται περαιτέρω βελτιώσεις προκειμένου να επιτευχθεί πιο
αποτελεσματική μεταφορά των διαχωρισμένων φορέων στα αντίστοιχα ηλεκτρόδια.
Προσπάθειες προς αυτή την κατεύθυνση έχουν γίνει, είτε επηρεάζοντας την αναμειξιμότητα
μεταξύ του δότη και δέκτη είτε με την ανάπτυξη πιο αποτελεσματικών δοτών ή δεκτών
ηλεκτρονίων. Νέα υβριδικά υλικά με βάση το φουλλερένιο έχουν χρησιμοποιηθεί για να
επηρεάσουν τις ημιαγώγιμες ιδιότητες των πολυμερών. Δεδομένου ότι οι πολυκινολίνες
αποτελούν μια από τις πλέον υποσχόμενες κατηγορίες πολυμερών μεταφοράς φορτίου (οπής ή ηλεκτρονίου) για εφαρμογή σε διάφορες οπτοηλεκτρονικές εφαρμογές, ο συνδυασμός τους με C60 αναμένεται να παράσχει μια λύση για την ενίσχυση των οπτικών, μορφολογικών και ηλεκτρονικών τους ιδιοτήτων. Πρόσφατη έρευνα έχει δείξει ότι η τροποποίηση των
πολυκινολινών ώστε να έχουν χαμηλότρες τιμές LUMO θα ενισχύσει τις ιδιότητες τους ως
δέκτες ηλεκτρονίων.
Στην εργασία αυτή μελετήθηκαν οι ηλεκτρονικές ιδιότητες διαφόρων υλικών που αντιστοιχούν στα διαδοχικά στάδια σύνθεση ενός νέου υβριδικού συμπολυμερικού δέκτη μέσω των φασματοσκοπιών φωτοηλεκτρονίων από ακτίνες-Χ και ακτινοβολία UV (XPS/UPS). Το τελικό υβριδικό πολυμερές που μελετήθηκε είναι η πολυ-πενταφθόροφενυλοκινολίνη η οποία
υβριδίστηκε με C60 (P5FQ-C60). Το μονομερές πενταφθόροφενυλοκινολίνη (Ph5FQ), το καθαρό
C60 και το υβριδικό μονομερές Ph5FQ-C60 έχουν επίσης μελετηθεί. Επίσης μελετήθηκαν τα
υβριδικά συμπολυμερή P3OT-co-P5FQ και P3OT-co-(P5FQ-Ν-C60) με αναλογία 1:10 για
χρήση ως δέκτες ηλεκτρονίων με καλύτερη αναμειξιμότητα με τον δότη. Για την
φασματοσκοπική έρευνα τα δείγματα αποτέθηκαν σε υποστρώματα Si με χρήση spin coating
από διαλύματα τολουολίου, THF ή χλωροφορμίου. Οι μετρήσεις πραγματοποιήθηκαν σε θάλαμο ανάλυσης υπερυψηλού κενού (βασική πίεση 5x10-9 mbar).
Από τις μετρήσεις XPS η κορυφή F1s των μη υβριδικών μορίων εμφανίστηκε σε ενέργεια
σύνδεσης (BE) 688.3 eV, μια τιμή που αντιστοιχεί σε άτομα φθορίου με δεσμούς C-F. Η ίδια κορυφή μετατοπίζεται σε χαμηλότερες ενέργειες σύνδεσης σε όλα τα υβριδικά υλικά,
υποδεικνύοντας την επίδραση των μορίων C60 στο ηλεκτρονιακό νέφος των φθορίων της
κινολίνης.
Από τα φάσματα UPS μετρήθηκε το υψηλότερο κατειλημμένο μοριακό τροχιακό (HOMO) σε
σχέση με το επίπεδο Fermi καθώς και το κατώφλι υψηλών ενεργειών σύνδεσης (HBE) για κάθε υλικό. Από αυτά, υπολογίστηκε το έργο εξόδου τους, ενώ από το άθροισμα του έργου εξόδου και της ενέργειας σύνδεσης του ΗΟΜΟ υπολογίστηκαν οι Ενέργειες Ιονισμού (ΙΡ). Αυτή είναι μια χρήσιμη παράμετρος για τον χαρακτηρισμό των ημιαγώγιμων πολυμερών επειδή αντιστοιχεί στην απόσταση μεταξύ του ΗΟΜΟ και του επιπέδου κενού και σε συνδυασμό με το ενεργειακό χάσμα (Eg) μπορεί να υπολογιστεί η χαμηλότερο μη κατειλημμένο μοριακό τροχιακό (LUMO).
Τα αποτελέσματα δείχνουν ότι οι ιδιότητες των ημιαγώγιμων πολυμερών ή μονομερών μπορούν
αποτελεσματικά να επηρεαστούν με υβριδοποίηση με χρήση νανοδομών του άνθρακα, που σε αυτή την περίπτωση είναι το C60. / Organic photovoltaic (OPV) devices present an attractive solution for solar energy applications due to their inherently low material costs, mechanical flexibility, and the potential of scalability to large area, light weight, devices. The most efficient electron accepting materials used so far in
OPVs are based on modified fullerenes. However, further improvement is needed in order to achieve more efficient transport of the separated charges to the respective electrodes. Attempts to this direction have been made either by influencing the miscibility between the donor and
acceptor phases or by the development of more efficient electron donor or electron acceptor materials. New hybrid materials comprising of fullerene can been used to tune the semiconducting properties of polymers. Since polyquinolines are one of the most promising classes of electron-transporting and electron-accepting polymers for use in various optoelectronic
applications their combination with C60 is expected to provide a route for the modulation of their optical, morphological as well as their electronic properties.
Previous work has shown that the modification of polyquinolines towards lower LUMO values will increase their electron accepting properties. In this work the electronic properties of various
materials that correspond to the sequential synthesis steps of a novel hybrid copolymeric
acceptor are investigated by x-ray and UV photoelectron spectroscopies (XPS/UPS). The hybrid material under investigation is the newly synthesised poly-perfluorophenylquinoline(P5FQ-C60)
hybridised with C60. The perfluorophenylquinoline monomer (P5FQ, Fig1a), C60 on its own and the hybrid P5FQ-C60 are also studied. The hybrid copolymers P3OT-co-P5FQ and P3OT-co-
(P5FQ-N-C60) with a ratio of 1:10 are also studied for use as electron acceptors to confer better miscibility with the donor. For the spectroscopic investigation the samples were deposited on Si substrates by spin coating from toluene,THF or chloroform solutions. The measurements were
carried out in an ultrahigh vacuum analysis chamber (base pressure 5x10-9 mbar) equipped with a hemispherical electron energy analyzer, a twin anode X-ray source for XPS and a discharge UV lamp for UPS. The XPS F1s photo-peak from the non hybrid samples appeared at binding energy (BE) 688.3
eV, a value that corresponds to fluorine atoms in C-F bonds. The same peak was shifted to lower binding energy in the case of all hybrid materials. Despite the fact that the F1s peak has a measurable signal, the C1s component corresponding to C-F bonds (BE=289.4 eV) appeared to be at noise level for all the materials under investigation. This is attributed to the fact that the
photoionization cross section of C1s is about four times lower than that for F1s.
From the UP spectra the Highest Occupied Molecular Orbital (HOMO) with respect to the Fermi Level and the high binding energy (HBE) cut off can be measured. From the latter the work function of the material is calculated, while the sum of the work function and the binding energy
of HOMO correspond to the Ionization Potential (IP). This is a useful parameter for the characterization of semiconducting polymers because it corresponds to the distance between the HOMO and the vacuum level and in combination with band gap (Eg) values can be used for the calculation of the Electron Affinity or in other words the Lowest Unoccupied Molecular Orbital
(LUMO) position. The results demonstrate that the semiconducting properties of polymeric or monomeric materials can be effectively tuned by hybridization with carbon based nanostructures,
in this case C60.
|
27 |
Synthesis and physical properties study on mixed metal oxynitridesYang, Minghui January 2010 (has links)
Mixed metal oxynitrides have attracted attention due to their interesting chemical and physical properties in the past twenty years. In this thesis, four series of mixed metal oxynitrides have been investigated. The samples have been synthesized by both thermal ammonolysis and high pressure high temperature methods. The structural exploration covers perovskite, scheelite and pyrochlore types. The structural studies were carried out using powder X-ray and neutron diffraction, and magnetic and conducting properties have been explored. A series of new RZrO2N (R = Pr, Nd and Sm) perovskites were synthesized using high pressure high temperature methods (HPHT) via a direct solid state reaction of R2O3 with Zr2ON2. All three new phases crystallize in the orthorhombic Pnma perovskite superstructure, and the structural distortion increases with decreasing R3+ ionic radius. RZrO2N contains both R3+ and d0 Zr4+ and thus shows a potential for multiferroic properties. EuWO1-xN2+x perovskites with a wide range of nitrogen contents (-0.16 ≤ x ≤ 0.46) were synthesized by thermal ammonolysis of an oxide precursor Eu2W2O9. Ferromagnetic ordering below a Curie temperature TC =12 ± 1 K and negative colossal magnetoresistances (CMR) have been discovered in these samples. In particular, for the lowest doped sample, EuWO0.96N2.04, CMR ≥ 99.7% was observed at 7 K. The possibility of tuning the physical properties by altering the chemical composition has been demonstrated. A linear relationship between the lattice parameter and nitrogen content of EuWO1+xN2-x was observed. An investigation has been made of the Eu-Mo-O-N system. A new pyrochlore oxynitride series Eu2Mo2O6-xN2+2x/3 (0.20 ≤ x ≤ 2.25) was synthesized by ammonolysis of Eu2Mo2O7. A ferrimagnetic ordering and semiconducting behavior has been observed in these samples. A detailed structural study of SrMO2N (M = Nb, Ta) has been performed using variable temperature neutron and electron diffraction. Partial anion order has been observed in both samples up to 750 oC. It is consistent with cis-ordering of the two nitrides in each MO4N2 octahedron. At low temperatures, this order directs the tilting of the octahedron to form a pseudo-tetragonal superstructure. It creates zig-zag MN chains in two or three dimensions within the lattice. This principle can be used to predict the local structures of perovskite-related oxynitrides AMO3-xNx.
|
28 |
Electrical and magnetic properties of organic semiconductors : electrical conductivity and electron spin resonance studies of semiconducting, organic, charge transfer saltsAhmad, Muhammad Munir January 1978 (has links)
Charge transfer salts of Tetracyanoquinodimethane (TCNQ) were synthesised and their electrical and magnetic properties were investigated. These salts show unusual electrical and magnetic behaviour in contrast to conventional organic compounds. These salts have crystal structures which in general consist of TCNQ radical ions stacked in chains, isolated from each other by the diamagnetic cations. They are thus regarded as "one-dimensional" electrical and magnetic systems. The ESR spectra of these salts are attributed to triplet excitons showing that the spin-spin and electronelectron correlation effects are important. In the ESR spectra (Chapter III) of some TCNQ salts dipolar splitting is observed confirming the spin-spin interaction. These triplet excitons are regarded as bound electron-hole pairs. The experimentally determined dipolar splitting tensors are presented in Chapter III and the intensity data in Chapter IV. A large number of fine structure lines are observed in the ESR spectra of Pyridinium-TCNQ and 4-Aminopyridinium-TCNQ apart from regular triplet exciton lines (Chapter III). These lines are attributed to the trapping of excitons on an extended formula finit (TCNQ2 )n. In Chapter IV the temperature dependent magnetic susceptibilities are discussed in terms of Heisenberg antiferromagnetism and Pauli paramagnetism. In Chapter V temperature dependent behaviour of electrical conductivity is discussed in terms of an exciton band model, the lattice structure of the salts and one-dimensional lattice consisting of defects giving rise to high and low conducting segments. Low temperature electrical and magnetic phases are discussed (Chapters IV and VII) in terms of a band and hopping mechanisms.In Chapter VI self consistent field calculations are made with reference to the tight binding one electron band theory using simplified Roothaan equations considering CNDO approximations. Theoretical results are related to experimental band gaps, spinspin interactions and charge alteration.
|
29 |
Epitaxy of boron phosphide on AIN, 4H-SiC, 3C-SiC and ZrB₂ substratesPadavala, Balabalaji January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / The semiconductor boron phosphide (BP) has many outstanding features making it attractive for developing various electronic devices, including neutron detectors. In order to improve the efficiency of these devices, BP must have high crystal quality along with the best possible electrical properties. This research is focused on growing high quality crystalline BP films on a variety of superior substrates like AIN, 4H-SiC, 3C-SiC and ZrB₂ by chemical vapor deposition. In particular, the influence of various parameters such as temperature, reactant flow rates, and substrate type and its crystalline orientation on the properties of BP films were studied in detail.
Twin-free BP films were produced by depositing on off-axis 4H-SiC(0001) substrate tilted 4° toward [1-100] and crystal symmetry matched zincblende 3C-SiC. BP crystalline quality improved at higher deposition temperature (1200°C) when deposited on AlN, 4H-SiC, whereas increased strain in 3C-SiC and increased boron segregation in ZrB₂ at higher temperatures limited the best deposition temperature to below 1200°C. In addition, higher flow ratios of PH₃ to B₂H₆ resulted in smoother films and improved quality of BP on all substrates. The FWHM of the Raman peak (6.1 cm⁻¹), XRD BP(111) peak FWHM (0.18°) and peak ratios of BP(111)/(200) = 5157 and BP(111)/(220) = 7226 measured on AlN/sapphire were the best values reported in the literature for BP epitaxial films. The undoped films on AlN/sapphire were n-type with a highest electron mobility of 37.8 cm²/V·s and a lowest carrier concentration of 3.15x1018 cm⁻ᶟ. Raman imaging had lower values of FWHM (4.8 cm⁻¹) and a standard deviation (0.56 cm⁻¹) for BP films on AlN/sapphire compared to 4H-SiC, 3C-SiC substrates. X-ray diffraction and Raman spectroscopy revealed residual tensile strain in BP on 4H-SiC, 3C-SiC, ZrB₂/4H-SiC, bulk AlN substrates while compressive strain was evident on AlN/sapphire and bulk ZrB₂ substrates.
Among the substrates studied, AlN/sapphire proved to be the best choice for BP epitaxy, even though it did not eliminate rotational twinning in BP. The substrates investigated in this work were found to be viable for BP epitaxy and show promising potential for further enhancement of BP properties.
|
30 |
Pulsed Laser Deposition of Thin Film HeterostructuresGarza, Ezra 04 August 2011 (has links)
Thin films of Strontium Ruthenate have been grown on Strontium Titanate and Lanthanum Aluminate (100) substrates by pulsed laser deposition. X-ray diffraction results show that the films grown on the Strontium Titanate are amorphous and polycrystalline on the Lanthanum Aluminate. Resistances versus temperature measurements show that the films exhibit semiconducting characteristics. In addition to the growth of Strontium Ruthenate thin films, multilayer heterostructures of Terfenol-D thin films on polycrystalline Lead Titanate thin films were grown by pulsed laser deposition. By using a novel experimental technique called magnetic field assisted piezoelectric force microscopy it is possible to investigate the magnetoelectric coupling between the electrostrictive Lead Titanate and magnetostrictive Terfenol-D thin film. Upon examination of the produced thin films the phase and amplitude components of the piezoelectric signal experience changes in response to an applied in-plane magnetic field. These changes provide experimental evidence of a magnetoelectric coupling between the Terfenol-D and Lead Titanate layers.
|
Page generated in 0.1029 seconds